Skip to main content
Log in

Integrating probe for tissue laser Doppler flowmeters

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Methods to measure microvascular blood flow usually probe small volumes of tissue. Therefore, spatial differences in skin blood flow alter the signal, when the sensing element is moved a short distance. To reduce the effects of spatial differences in skin blood flow, but yet record its temporal variability, a new integrating probe for laser Doppler flowmeters was developed. The probe receives light from seven different scattering volumes simultaneously, and the instrument processes an integrated signal which is ultimately taken as the average flow value. Significant spatial integration is found, as spatial variability is reduced by the square root of the number of scattering volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, H., Lindhagen, J., Nilsson, G. E., Salerud, E. G., Jodal, M. andLundgren, O. (1985) Evaluation of laser Doppler flowmetry in the assessment of intestinal, blood flow in cat.Gastroenterology,88, 951–957.

    Google Scholar 

  • Bonner, R. andNossal, R. (1981) Model for laser Doppler measurements of blood flow in tissue.Applied Optics,20, 2097–2107.

    Google Scholar 

  • Challoner, A. V. J. (1975) Accurate measurement of skin blood flow by a thermal conductance method.Med. & Biol. Eng.,13, 196–201.

    Google Scholar 

  • Challoner, A. V. J. (1979) Photoelectric plethysmography for estimating cutaneous blood flow. InNoninvasive physiological measurements, vol. 1,Rolfe,P. (Ed.), Academic Press, London, 125–151.

    Google Scholar 

  • Damber, J.-E., Lindahl, O., Selstam, G. andTenland, T. (1982) Testicular blood flow measured with a laser Doppler flowmeter: acute effects of catecholamines.Acta Physiol. Scand.,115, 209–215.

    Google Scholar 

  • Hellem, S., Jacobsson, L. S., Nilsson, G. E. andLewis, D. H. (1983) Measurement of microvascular blood flow in cancellous bone using laser Doppler flowmetry and133Xe-clearance.Int. J. Oral Surg.,12, 165–177.

    Google Scholar 

  • Hill, D. W. (1979) The role of electrical impedance methods for the monitoring of central and peripheral blood flow changes. InNoninvasive physiological measurements, vol. 1,Rolfe,P. (Ed.), Academic Press, London, 95–112.

    Google Scholar 

  • Holti, G. andMitchell, K. W. (1979) Estimation of the nutrient skin blood flow using a non-invasive segmented thermal clearance probe. Innoninvasive physiological measurements, Vol. 1,Rolfe,P. (Ed.), Academic Press, London, 113–123.

    Google Scholar 

  • Nijboer, J. A., Dorlas, J. C. andMahieu, H. F. (1981) Photoelectric plethysmography-some fundamental aspects of the reflection and transmission method.Clin. Phys. Physiol. Meas.,2, 205–215.

    Article  Google Scholar 

  • Nilsson, G. E., Tenland, T. andÖberg, P.-Å. (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy.IEEE Trans.,BME-27, 12–19.

    Google Scholar 

  • Nilsson, G. E., Tenland, T. andÖberg, P.-Å. (1980b) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. Ibid.,BME-27, 597–604.

    Google Scholar 

  • Nilsson, G. E. (1984) Signal processor for laser Doppler tissue flowmeters.Med. & Biol. Eng. & Comput.,22, 343–348.

    Google Scholar 

  • Puel, P., Boccalon, H., Laborde, G. andFabre, J. (1978) Utilization of133Xe in the exploration of patients with chronic arteriopathy of lower extremities. InNoninvasive cardiovascular diagnosis current concepts,Diethrich,E. B. (Ed.), University Park Press, Baltimore, 153–158.

    Google Scholar 

  • Roberts, V. C. andSainz, A. J. (1979) Ultrasonic Doppler velocimetry. InNoninvasive physiological measurements, vol. 1,Rolfe,P. (Ed.), Academic Press, London, 153–174.

    Google Scholar 

  • Roberts, V. C. (1982) Photoplethysmography-fundamental aspects of the optical properties of blood in motion.Trans. Inst. M. C.,4, 101–106.

    Google Scholar 

  • Rothman, S. (1965)Physiology and biochemistry of the skin. The University of Chicago Press, Chicago.

    Google Scholar 

  • Salerud, E. G., Tenland, T., Nilsson, G. E. andÖberg, P.Å. (1983) Rhythmical variations in human skin blood flow.Int. J. Microcirc.: Clin. and Exp.,2, 91–102.

    Google Scholar 

  • Sara, C. A. andShanks, C. A. (1978) The peripheral pulse monitor—a review of electrical plethysmography.Anaesth. Intens. Care,6, 226–233.

    Google Scholar 

  • Sejrsen, P. (1967) Diffusion processes invalidating the intraarterial krypton-85 beta-particle clearance method for measurement of skin blood flow in man.Circulation Res.,21, 281–295.

    Google Scholar 

  • Sejrsen, P. (1969) Blood flow in cutaneous tissue in man studied by washout of radioactive xenon. Ibid.,25, 215–229.

    Google Scholar 

  • Seldinger, S. I. (1953) Catheter replacement of the needle in percutaneous arteriography.Acta Radiol.,39, 368–376.

    Article  Google Scholar 

  • Sigdell, J.-E. (1975a) Venous occlusion plethysmography. Part 1: Basic principles and applications.Biomed. Eng.,10, 300–302.

    Google Scholar 

  • Sigdell, J.-E. (1975b) Venous occlusion plethysmography. Part 2: Methods. Ibid.,10, 342–349.

    Google Scholar 

  • Stern, M. D. (1975)In vivo evaluation of microcirculation by coherent light scattering.Nature,254, 56–58.

    Article  Google Scholar 

  • Tenland, T., Salerud, E. G., Nilsson, G. E. andÖberg, P.Å. (1983) Spatial and temporal variations in human skin blood flow.Int. J. Microcirc.: Clin. and Exp.,2, 81–90.

    Google Scholar 

  • Watkins, D. andHolloway, G. A. Jr. (1978) An instrument to measure cutaneous blood flow using the Doppler shift of laser light.IEEE Trans.,BME-25, 28–33.

    Google Scholar 

  • Weinman, J., Hayat, A. andRaviv, G. (1977) Reflection photoplethysmography of arterial-blood-volume pulses.Med. & Biol. Eng. & Comput.,15, 22–31.

    Google Scholar 

  • Wiedeman, M. P. (1963) Patterns of the arteriovenous pathways.In Handbook of Physiology, Circulation, section 2. Vol II,Hamilton,W. F. andDow,P. (Eds.), Williams and Wilkins, Baltimore, 891–933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salerud, E.G., Nilsson, G.E. Integrating probe for tissue laser Doppler flowmeters. Med. Biol. Eng. Comput. 24, 415–419 (1986). https://doi.org/10.1007/BF02442697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442697

Keywords

Navigation