Skip to main content
Log in

Advanced Dual-Core Photonic Crystal Fiber Plasmonic Biosensor: Unveiling High Sensitivity and Practical Feasibility for Biochemical Detection

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The article proposes a dual-core photonic crystal fiber-based plasmonic biosensor. Two prominent hexagonal lattices with circular air holes along with plasmonic material and analyte sensing layer have been deposited on the outer surface of the fiber to make the practical applications feasible. A thickness of 30 nm of noble plasmonic material silver has been applied to excite the surface plasmons. A 5-nm-thin titanium dioxide (TiO2) layer has also been observed as an adhesive layer between the silica glass and silver. The behavior of the sensor has been examined employing the mode solver-based finite element method (FEM). The proposed sensor gives responses of maximum amplitude sensitivity of 98.67764 RIU−1 and maximum wavelength sensitivity of 14,090 nm/RIU in the y-polarized propagation mode, employing the amplitude and wavelength interrogation methods, respectively. Furthermore, with the variation of concentration of β-LG, it shows maximum amplitude sensitivity of 110.59998 RIU−1 and WS of 5303.253 nm/RIU. Owing to the straightforward design and maximum sensitivity, the proposed sensor can be applicable to detect biological and biochemical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Khalil AE, El-Saeed AH, Ibrahim MA et al (2018) Highly sensitive photonic crystal fiber biosensor based on titanium nitride. Opt Quantum Electron 50:1–12. https://doi.org/10.1007/s11082-018-1397-0

    Article  CAS  Google Scholar 

  2. Gangwar RK, Pathak AK, Kumar S (2023) Recent progress in photonic crystal devices and their applications: a review. Photonics 10:1199. https://doi.org/10.3390/photonics10111199

    Article  CAS  Google Scholar 

  3. Salim ET, Fakhri MA, Tariq SM et al (2023) The unclad single-mode fiber-optic sensor simulation for localized surface plasmon resonance sensing based on silver nanoparticles embedded coating. Plasmonics. https://doi.org/10.1007/s11468-023-01949-z

    Article  Google Scholar 

  4. Luan N, Yao J (2017) A hollow-core photonic crystal fiber-based SPR sensor with large detection range. IEEE Photonics J 9:1–7. https://doi.org/10.1109/JPHOT.2017.2694479

    Article  Google Scholar 

  5. Mahmud I, Shushama KN, Khaleque A et al (2019) Highly sensitive plasmonic biosensor on photonic crystal fiber. IEEE Int Conf Telecommun Photonics ICTP 90:315–321. https://doi.org/10.1109/ICTP48844.2019.9041694

    Article  Google Scholar 

  6. Al MM, Hossain MA, Haque E et al (2020) Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band. IEEE Sens J 20:7692–7700. https://doi.org/10.1109/JSEN.2020.2980327

    Article  Google Scholar 

  7. Manickam P, Senthil R (2023) Numerical investigation on the D-SPR-PQF — high refractive index and temperature sensor for transport fuel adulteration. Results Phys 52:106883. https://doi.org/10.1016/j.rinp.2023.106883

    Article  Google Scholar 

  8. Yadav S, Lohia P, Dwivedi DK (2023) A novel approach for identification of cancer cells using a photonic crystal fiber-based sensor in the terahertz regime. Plasmonics. https://doi.org/10.1007/s11468-023-01887-w

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu F, Thomas PA, Kravets VG et al (2019) Layered material platform for surface plasmon resonance biosensing. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-56105-7

    Article  CAS  Google Scholar 

  10. Rifat AA, Hasan MR, Ahmed R, Butt H (2017) Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J Nanophotonics 12:012503. https://doi.org/10.1117/1.jnp.12.012503

    Article  Google Scholar 

  11. Rifat AA, Ahmed R, Yetisen AK et al (2017) Photonic crystal fiber based plasmonic sensors. Sens Actuators B Chem 243:311–325. https://doi.org/10.1016/j.snb.2016.11.113

    Article  CAS  Google Scholar 

  12. Mustapha AA, Hassan OS, Ataro TD et al (2023) A wide-range transmission line-based linear displacement sensor. IEEE Sens J 23:18609–18623. https://doi.org/10.1109/JSEN.2023.3290912

    Article  Google Scholar 

  13. Fan Z, Li S, Liu Q et al (2015) High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J 7:1–9. https://doi.org/10.1109/JPHOT.2015.2432079

    Article  CAS  Google Scholar 

  14. Wang S, Lu Y, Ma W et al (2022) D-shaped surface plasmon photonic crystal fiber temperature sensor. Plasmonics 17:1911–1919. https://doi.org/10.1007/s11468-022-01683-y

    Article  CAS  Google Scholar 

  15. Fan X-H, Zhang J-C, Zhang M et al (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt Express 25:14238

    Article  CAS  PubMed  Google Scholar 

  16. Yadav S, Lohia P, Dwivedi DK (2023) Quantitative analysis of highly efficient PCF-based sensor for early detection of breast cancer cells in THz regime. J Opt. https://doi.org/10.1007/s12596-023-01404-6

    Article  Google Scholar 

  17. Podder E, Hossain MB, Ahmed K (2022) Photonic crystal fiber for milk sensing. Sens Bio-Sensing Res 38:100534. https://doi.org/10.1016/j.sbsr.2022.100534

    Article  Google Scholar 

  18. Ashley J, D’Aurelio R, Piekarska M et al (2018) Development of a β-lactoglobulin sensor based on SPR for milk allergens detection. Biosensors 8:1–11. https://doi.org/10.3390/bios8020032

    Article  CAS  Google Scholar 

  19. Sajan SC, Singh A, Sharma PK, Kumar S (2023) Silicon photonics biosensors for cancer cells detection - a review. IEEE Sens J 23:3366–3377. https://doi.org/10.1109/JSEN.2023.3235920

    Article  CAS  Google Scholar 

  20. Kumari S, Tripathi SM (2022) Hybrid plasmonic SOI ring resonator for bulk and affinity bio - sensing applications. SILICON 14:11577–11586. https://doi.org/10.1007/s12633-022-01877-3

    Article  CAS  Google Scholar 

  21. Yadav S, Lohia P, Dwivedi DK (2023) Eminently sensitive mono-rectangular photonic crystal fiber-based sensor for cancer cell detection in THz regime. J Opt. https://doi.org/10.1007/s12596-023-01191-0

    Article  Google Scholar 

  22. Yadav S, Singh S, Lohia P et al (2022) Delineation of profoundly birefringent nonlinear photonic crystal fiber in terahertz frequency regime. J Opt Commun. https://doi.org/10.1515/joc-2022-0143

    Article  Google Scholar 

  23. Boopathi CS, Kumar KV, Sheeba Rani S et al (2018) Design of human blood sensor using symmetric dual core photonic crystal fiber. Results Phys 11:964–965. https://doi.org/10.1016/j.rinp.2018.10.065

    Article  Google Scholar 

  24. Bijalwan A, Singh BK, Rastogi V (2021) Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik (Stuttg) 226:165994. https://doi.org/10.1016/j.ijleo.2020.165994

    Article  CAS  Google Scholar 

  25. Singh Y, Raghuwanshi SK (2019) Sensitivity enhancement of the surface plasmon resonance gas sensor with black phosphorus. IEEE Sensors Lett 3:18–21. https://doi.org/10.1109/LSENS.2019.2954052

    Article  Google Scholar 

  26. Shakya AK, Singh S (2023) Novel Merger of spectroscopy and refractive index sensing for modelling hyper sensitive hexa-slotted plasmonic sensor for transformer oil monitoring in near-infrared region. Opt Quantum Electron 55:1–25. https://doi.org/10.1007/s11082-023-05016-z

    Article  CAS  Google Scholar 

  27. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with Bi-layer of gold for chemical sensing. Plasmonics 16:1781–1790. https://doi.org/10.1007/s11468-020-01315-3

    Article  CAS  Google Scholar 

  28. Chaudhary VS, Kumar D, Mishra R, Sharma S (2020) Hybrid dual core photonic crystal fiber as hydrostatic pressure sensor. Optik (Stuttg) 210:164497. https://doi.org/10.1016/j.ijleo.2020.164497

    Article  CAS  Google Scholar 

  29. Shakya AK, Singh S (2021) Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Opt Commun 478:126372. https://doi.org/10.1016/j.optcom.2020.126372

    Article  CAS  Google Scholar 

  30. Umar A, Singh S, Yadav S et al (2023) Numerical study of surface plasmon resonance biosensor using aluminium oxide and bismuth telluride nanomaterials for skin cancer cell detection. J Nanoelectron Optoelectron 17:1655–1658. https://doi.org/10.1166/jno.2022.3358

    Article  Google Scholar 

  31. Bartkowiak D, Merk V, Reiter-Scherer V et al (2016) Porous MgF2-over-gold nanoparticles (MON) as plasmonic substrate for analytical applications. RSC Adv 6:71557–71566. https://doi.org/10.1039/c6ra10501g

    Article  CAS  Google Scholar 

  32. Noman AA, Haque E, Hossain MA, Hai NH, Namihira Y, Ahmed F (2020) Sensitivity enhancement of modified D-shaped microchannel PCF-based surface plasmon resonance sensor. Sensors 20:6049. https://doi.org/10.3390/s20216049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhattacharya R, Rajan MSM, Sharafali A et al (2022) Experimental and theoretical study of polarization in commercially available photonic crystal fibers. Opt Quantum Electron 54:1–12. https://doi.org/10.1007/s11082-022-04066-z

    Article  CAS  Google Scholar 

  34. Wang T, Mao Y, Liu B et al (2022) Compact fiber optic sensor for temperature and transverse load measurement based on the parallel vernier effect. IEEE Photonics J 14:1–8. https://doi.org/10.1109/JPHOT.2022.3206313

    Article  Google Scholar 

  35. Chatterjee S, Deb U, Datta S et al (2017) Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation. Chemosphere 184:438–451. https://doi.org/10.1016/j.chemosphere.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  36. Mohammed NA, Khedr OE, El-Rabaie ESM, Khalaf AAM (2023) High-sensitivity early detection biomedical sensor for tuberculosis with low losses in the terahertz regime based on photonic crystal fiber technology. Photonic Sensors 13:1–16. https://doi.org/10.1007/s13320-023-0675-z

    Article  CAS  Google Scholar 

  37. Fontham ETH, Wolf AMD, Church TR et al (2020) Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J Clin 70:321–346. https://doi.org/10.3322/caac.21628

    Article  PubMed  Google Scholar 

  38. Miller KD, Fidler-Benaoudia M, Keegan TH et al (2020) Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin 70:443–459. https://doi.org/10.3322/caac.21637

    Article  PubMed  Google Scholar 

  39. Paul BK, Ahmed K, Asaduzzaman S, Islam MS (2017) Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens Bio-Sensing Res 12:36–42. https://doi.org/10.1016/j.sbsr.2016.11.005

    Article  Google Scholar 

  40. Abbas FF, Ahmed SS (2023) Photonic crystal fiber pollution sensor based on the surface plasmon resonance technology. Baghdad Sci J 20:616–621. https://doi.org/10.21123/bsj.2022.6730

    Article  Google Scholar 

  41. Divya J, Selvendran S (2023) Surface plasmon resonance-based gold-coated hollow-core negative curvature optical fiber sensor. Biosensors. https://doi.org/10.3390/bios13020148

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ibrahimi KM, Kumar R, Pakhira W (2024) Early detection of cancer cells using high-sensitivity dual-side polished photonic crystal fiber biosensors based on surface plasmon resonance. Opt Quantum Electron 56:1–18. https://doi.org/10.1007/s11082-024-06782-0

    Article  CAS  Google Scholar 

  43. Pravesh R, Kumar D, Pandey BP et al (2024) Design and analysis of a double D-shaped dual core PCF sensor for detecting biomolecules in the human body. IEEE Sens J XX: https://doi.org/10.1109/JSEN.2024.3380095

    Article  Google Scholar 

  44. Ullah S, Chen H, Gao Z et al (2024) Dual-side polished surface plasmon resonance–based photonic crystal fiber for refractive index sensing and polarization filtering. Plasmonics. https://doi.org/10.1007/s11468-023-02185-1

    Article  Google Scholar 

  45. Das S, Singh VK (2022) Highly sensitive PCF based plasmonic biosensor for hemoglobin concentration detection. Photonics Nanostructures - Fundam Appl 51:101040. https://doi.org/10.1016/j.photonics.2022.101040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sapana Yadav: original manuscript writing, methodology, and software analysis; Yadvendra Singh: reviewing and conceptualization; Pooja Lohia and D. K. Dwivedi: editing and supervision.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Dwivedi, D.K., Lohia, P. et al. Advanced Dual-Core Photonic Crystal Fiber Plasmonic Biosensor: Unveiling High Sensitivity and Practical Feasibility for Biochemical Detection. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02348-8

Keywords

Navigation