Skip to main content
Log in

A Novel Approach for Identification of Cancer Cells Using a Photonic Crystal Fiber-Based Sensor in the Terahertz Regime

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present study, a rectangular-shaped photonic crystal fiber-based sensor has been proposed for the identification of various types of cancer cells. Finite element method-based COMSOL multiphysics software has been used to evaluate the performance of the sensor. The variation in the refractive index has been used for the identification of cancer cells. The simulation of the accessed model has been achieved for various cancer cells such as MCF-7, Jurkat, PC-12, HeLa, MDA-MB-231, and basal detectors. The values of birefringence, effective refractive index, relative sensitivity, nonlinearity, and effective area are obtained for MCF-7, Jurkat, PC-12, HeLa, MDA-MB-231, and basal cells for the optimum + 5% case, optimum case, and optimum-5% case in x and y directions, respectively. The proposed photonic crystal fiber-based sensor has been utilized for the identification of breast cancer type II, blood cancer, adrenal gland cancer, cervical cancer, breast cancer type I, and skin cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

Data will be made available on request.

References

  1. Mollah MA, Yousufali M, Ankan IM et al (2020) Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens Bio-Sensing Res 29:100344. https://doi.org/10.1016/j.sbsr.2020.100344

  2. Li J (2020) A review: development of novel fiber-optic platforms for bulk and surface refractive index sensing applications. Sens Actuators Rep 2:100018. https://doi.org/10.1016/j.snr.2020.100018

  3. De M, Gangopadhyay TK, Singh VK (2019) Prospects of photonic crystal fiber as physical sensor: an overview. Sensors (Switzerland) 19. https://doi.org/10.3390/s19030464

  4. Cai L, Pan J, Hu S (2020) Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Opt Lasers Eng 127. https://doi.org/10.1016/j.optlaseng.2019.105968

  5. Zhou L, Meng C, Copner N (2023) Marker detection. Clover

  6. Shivangani, Alotaibi MF, Al-Hadeethi Y et al (2022) Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with BlueP/WS2-covered Al2 O3-nickel nanofilms. Nanomaterials 12:. https://doi.org/10.3390/nano12132205

  7. Singh Yadav A, Singh A, Chaudhary VS et al (2018) Extremely sensitive photonic crystal fiber–based cancer cell detector in the terahertz regime. Plasmonics 4:1–3. https://doi.org/10.1109/UPCON.2018.8597148

    Article  Google Scholar 

  8. Mittal S, Saharia A, Ismail Y et al (2023) Spiral shaped photonic crystal fiber-based surface plasmon resonance biosensor for cancer cell detection. Photonics 10:230. https://doi.org/10.3390/photonics10030230

    Article  CAS  Google Scholar 

  9. Zhao T, Lou S, Wang X et al (2018) Simultaneous measurement of curvature, strain and temperature using a twin-core photonic crystal fiber-based sensor. Sensors (Switzerland) 18. https://doi.org/10.3390/s18072145

  10. Hossain MB, Podder E (2019) Design and investigation of PCF-based blood components sensor in terahertz regime. Appl Phys A Mater Sci Process 125:1–8. https://doi.org/10.1007/s00339-019-3164-x

    Article  CAS  Google Scholar 

  11. Singh S, Singh PK, Umar A et al (2020) 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11:1–28. https://doi.org/10.3390/mi11080779

    Article  Google Scholar 

  12. Mahmud SS, Islam MT, Atiqullah SM (2019) Poisonous chemical sensing using highly sensitive terahertz photonic crystal fiber sensor. 2019 4th Int Conf Electr Inf Commun Technol EICT 2019 1–5. https://doi.org/10.1109/EICT48899.2019.9068856

  13. Abdullah-Al-Shafi M, Sen S (2020) Design and analysis of a chemical sensing octagonal photonic crystal fiber (O-PCF) based optical sensor with high relative sensitivity for terahertz (THz) regime. Sens Bio-Sensing Res 29:100372. https://doi.org/10.1016/j.sbsr.2020.100372

  14. Jibon RH, Rahaman ME, Alahe MA (2021) Detection of primary chemical analytes in the THz regime with photonic crystal fiber. Sens Bio-Sensing Res 33:100427. https://doi.org/10.1016/j.sbsr.2021.100427

  15. Hossain MB, Podder E, Bulbul AAM, Mondal HS (2020) Bane chemicals detection through photonic crystal fiber in THz regime. Opt Fiber Technol 54:102102. https://doi.org/10.1016/j.yofte.2019.102102

  16. Shafkat A, Rashed ANZ, El-Hageen HM, Alatwi AM (2021) Design and analysis of a single elliptical channel photonic crystal fiber sensor for potential malaria detection. J Sol-Gel Sci Technol 98:202–211. https://doi.org/10.1007/s10971-021-05490-5

    Article  CAS  Google Scholar 

  17. Boopathi CS, Kumar KV, Sheeba Rani S et al (2018) Design of human blood sensor using symmetric dual core photonic crystal fiber. Results Phys 11:964–965. https://doi.org/10.1016/j.rinp.2018.10.065

    Article  Google Scholar 

  18. Qin J, Zhu B, Du Y, Han Z (2019) Terahertz detection of toxic gas using a photonic crystal fiber. Opt Fiber Technol 52:101990. https://doi.org/10.1016/j.yofte.2019.101990

  19. Ekhlasur Rahaman M, Bellal Hossain M, Shekhar Mondal H et al (2020) Highly sensitive photonic crystal fiber liquid sensor in terahertz frequency range. Mater Today Proc 43:3815–3820. https://doi.org/10.1016/j.matpr.2020.11.413

    Article  CAS  Google Scholar 

  20. Ahmed K, Ahmed F, Roy S et al (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19:3368–3375. https://doi.org/10.1109/JSEN.2019.2895166

    Article  CAS  Google Scholar 

  21. Sultana J, Islam MS, Ahmed K et al (2018) Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl Opt 57:2426. https://doi.org/10.1364/ao.57.002426

    Article  CAS  PubMed  Google Scholar 

  22. Rana S, Islam S, Sultana J et al (2017) A highly birefringent slotted-core THz fiber. Proc 9th Int Conf Electr Comput Eng ICECE 2016 226–229. https://doi.org/10.1109/ICECE.2016.7853897

  23. Yadav S, Lohia P (2023) Eminently sensitive mono - rectangular photonic crystal fiber - based sensor for cancer cell detection in THz regime. J Opt. https://doi.org/10.1007/s12596-023-01191-0

    Article  Google Scholar 

  24. Umar A, Singh S, Yadav S et al (2023) Numerical study of surface plasmon resonance biosensor using aluminium oxide and bismuth telluride nanomaterials for skin cancer cell detection. J Nanoelectron Optoelectron 17:1655–1658. https://doi.org/10.1166/jno.2022.3358

    Article  Google Scholar 

  25. Podder E, Hossain MB, Ahmed K (2022) Photonic crystal fiber for milk sensing. Sens Bio-Sensing Res 38:100534. https://doi.org/10.1016/j.sbsr.2022.100534

  26. Hossain MB, Kříž J, Dhasarathan V, Rahaman ME (2023) Photonic crystal fiber (PhCF) for petrochemical sensing. Front Phys 10:1–8. https://doi.org/10.3389/fphy.2022.1097841

    Article  Google Scholar 

  27. Uddin S, Singh DK (2016) A solid silica core based non-linear hybrid PCF with low confinement loss. Optik (Stuttg) 127:10399–10411. https://doi.org/10.1016/j.ijleo.2016.08.043

    Article  CAS  Google Scholar 

  28. Jabin MA, Luo Y, Peng GD et al (2020) Design and fabrication of amoeba faced photonic crystal fiber for biosensing application. Sensors Actuators, A Phys 313:112204. https://doi.org/10.1016/j.sna.2020.112204

  29. Islam MN, Al-tabatabaie KF, Habib MA et al (2022) Design of a hollow-core photonic crystal fiber based edible oil sensor. Crystals 12. https://doi.org/10.3390/cryst12101362

  30. Islam MR, Arif Hossain M, Ali SI et al (2021) Design and characterization of an ultra low loss, dispersion-flattened slotted photonic crystal fiber for terahertz application. J Opt Commun 42:619–626. https://doi.org/10.1515/joc-2018-0152

    Article  Google Scholar 

  31. Zhang Y, Shi C, Gu C et al (2007) Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Appl Phys Lett 90:. https://doi.org/10.1063/1.2738185

  32. Goto M, Quema A, Takahashi H et al (2004) Teflon photonic crystal fiber as terahertz waveguide. Japanese J Appl Physics, Part 2 Lett 43:2–5. https://doi.org/10.1143/jjap.43.l317

  33. Rahman BMA, Markides C, Uthman M et al (2014) Characterization of low-loss waveguides and devices for terahertz radiation. Opt Eng 53:031210. https://doi.org/10.1117/1.oe.53.3.031210

  34. Islam MR, Iftekher ANM, Mou FA et al (2021) Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection. Appl Phys A Mater Sci Process 127:1–16. https://doi.org/10.1007/s00339-020-04261-3

    Article  CAS  Google Scholar 

  35. Ahmed K, Paul BK, Ahmed F et al (2021) Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the Terahertz range. IET Optoelectron 15:1–7. https://doi.org/10.1049/ote2.12006

    Article  Google Scholar 

  36. Rahaman ME, Hossain MB, Mondal HS (2022) Effect of background materials in photonic crystal fiber sensor. Opt Rev 29:1–6. https://doi.org/10.1007/s10043-021-00712-1

    Article  CAS  Google Scholar 

  37. Islam MA, Islam MR, Siraz S et al (2021) Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk. Appl Phys A Mater Sci Process 127:1–13. https://doi.org/10.1007/s00339-021-04472-2

    Article  CAS  Google Scholar 

  38. Yadav S, Singh S, Lohia P et al (2022) Delineation of profoundly birefringent nonlinear photonic crystal fiber in terahertz frequency regime. J Opt Commun. https://doi.org/10.1515/joc-2022-0143

    Article  Google Scholar 

  39. Biswas S, Abdullah MH, Shawon SMSH et al (2022) Modelling and numerical analysis of a highly-efficient Pcf-based amino acid sensor. Khulna Univ Stud 1–6. https://doi.org/10.53808/kus.2022.icstem4ir.0012-se

  40. Bhattacharya R, Rajan MSM, Sharafali A et al (2022) Experimental and theoretical study of polarization in commercially available photonic crystal fibers. Opt Quantum Electron 54:1–12. https://doi.org/10.1007/s11082-022-04066-z

    Article  CAS  Google Scholar 

  41. Panda A, Pukhrambam PD (2021) Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths. J Comput Electron 20:943–957. https://doi.org/10.1007/s10825-020-01650-y

    Article  CAS  Google Scholar 

  42. Bulbul AAM, Rahaman H, Podder E (2022) Design and quantitative analysis of low loss and extremely sensitive PCF-based biosensor for cancerous cell detection. Opt Quantum Electron 54:1–16. https://doi.org/10.1007/s11082-022-03513-1

    Article  CAS  Google Scholar 

  43. Reena STS, Kumar A et al (2016) Rectangular-core large-mode-area photonic crystal fiber for high power applications: design and analysis. Appl Opt 55:4095. https://doi.org/10.1364/ao.55.004095

    Article  CAS  Google Scholar 

  44. Devika V, Rajan MSM (2020) Hexagonal PCF of honeycomb lattice with high birefringence and high nonlinearity. Int J Mod Phys B 34:1–10. https://doi.org/10.1142/S0217979220500940

    Article  Google Scholar 

  45. Arif MFH, Hossain MM, Islam N, Khaled SM (2019) A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sens Bio-Sensing Res 22:100252. https://doi.org/10.1016/j.sbsr.2018.100252

  46. Olyaee S, Naraghi A, Ahmadi V (2014) High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik (Stuttg) 125:596–600. https://doi.org/10.1016/j.ijleo.2013.07.047

    Article  CAS  Google Scholar 

  47. Ferdous AHMI, Anower MS, Musha A et al (2022) A heptagonal PCF-based oil sensor to detect fuel adulteration using terahertz spectrum. Sens Bio-Sensing Res 36:100485. https://doi.org/10.1016/j.sbsr.2022.100485

Download references

Acknowledgements

The author is very grateful to Dr. Sachin Singh, Institute of Advanced Material, Gammalkilsvagen, Ulrika, Sweden, and Dr. Vijay Shanker Choudhary, Galgotias University, for their valuable support.

Author information

Authors and Affiliations

Authors

Contributions

Sapana Yadav: original manuscript writing, methodology, software analysis, conceptualization; D.K. Dwivedi and Pooja Lohia: reviewing, editing, and supervision.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Ethical Approval

This is a theoretical study that does not require ethical approval.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Lohia, P. & Dwivedi, D.K. A Novel Approach for Identification of Cancer Cells Using a Photonic Crystal Fiber-Based Sensor in the Terahertz Regime. Plasmonics 18, 1753–1769 (2023). https://doi.org/10.1007/s11468-023-01887-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01887-w

Keywords

Navigation