Skip to main content
Log in

Hybrid Plasmonic SOI Ring Resonator for Bulk and Affinity Bio - sensing Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We study a SOI hybrid plasmonic waveguide (Silicon – slot – metal) micro-ring resonator for bulk and affinity sensing applications. The opto-geometric parameters of the sensors have been optimized to enhance the affinity sensitivity by maximizing the modal field confinement in the sensing (slot) region. Keeping the practicality aspect in view, we have performed the simulations by considering a specific case of β-Lactoglobulin protein molecules in liquid phase as an example. The maximum attained bulk refractive index sensitivity is 555 nm/RIU with a figure of merit of 154.16 RIU−1 when 10% β-Lactoglobulin molecules are present in the sample. A more realistic approach has been proposed for investigation of affinity sensing with the results further compared to the existing approach. Effect of varied thickness of biomolecule adlayer in the slot region, in which the modal electric field is immensely confined, has been studied. We observe that with increasing adlayer thickness, the surface sensitivity increases exponentially and a very high affinity sensitivity of 0.97 nm/nm has been observed when the biomolecules are immobilized over the entire slot region. Our study may find direct application in quantitative detection of β-Lactoglobulin protein molecules in bio-sample, and in designing highly sensitive photonic biosensors for specific detection of biomolecules by incorporating appropriate immobilization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahmadivand A, Gerislioglu B, Ahuja R, Kumar Mishra Y (2020) Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings. Mater Today 32:108–130. https://doi.org/10.1016/j.mattod.2019.08.002

    Article  CAS  Google Scholar 

  2. Ahmadivand A, Gerislioglu B (2022) Photonic and Plasmonic Metasensors. Laser Photonics Rev 16:1–34. https://doi.org/10.1002/lpor.202100328

    Article  CAS  Google Scholar 

  3. Khodadadi M, Moshiri SMM, Nozhat N (2020) Theoretical analysis of a simultaneous graphene-based circular Plasmonic refractive index and thickness bio-sensor. IEEE Sensors J 20:9114–9123. https://doi.org/10.1109/JSEN.2020.2987696

    Article  CAS  Google Scholar 

  4. Ou X, Yang Y, Sun F, Zhang P, Tang B, Li B, Liu R, Liu D, Li Z (2021) Wide-range, ultra-compact, and high-sensitivity ring resonator biochemical sensor with CMOS-compatible hybrid plasmonic waveguide. Opt Express 29:19058–19067. https://doi.org/10.1364/oe.428159

    Article  CAS  Google Scholar 

  5. Rogers KR (2000) Principles of affinity-based biosensors. Mol Biotechnol 14:109–130. https://doi.org/10.1385/MB:14:2:109

    Article  CAS  Google Scholar 

  6. Mittal S, Sharma T, Tiwari M (2021) Surface plasmon resonance based photonic crystal fiber biosensors: a review. Mater Today Proc 43:3071–3074. https://doi.org/10.1016/j.matpr.2021.01.405

    Article  CAS  Google Scholar 

  7. Singh Y, Raghuwanshi SK (2021) Titanium dioxide (TiO2) coated optical fiber-based SPR sensor in near-infrared region with bimetallic structure for enhanced sensitivity, Optik (Stuttg). 226. https://doi.org/10.1016/j.ijleo.2020.165842

  8. Kazanskiy NL, Khonina SN, Butt MA (2020) Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Phys E Low-Dimensional Syst Nanostructures 117:113798. https://doi.org/10.1016/j.physe.2019.113798

    Article  CAS  Google Scholar 

  9. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor, Sensors (Switzerland). 19. https://doi.org/10.3390/s19040791

  10. Butt MA, Khonina SN, Kazanskiy NL (2018) Hybrid plasmonic waveguide-assisted metal – insulator – metal ring resonator for refractive index sensing. J Mod Opt 0340:1–6. https://doi.org/10.1080/09500340.2018.1427290

    Article  CAS  Google Scholar 

  11. Kazanskiy NL, Khonina SN, Butt MA (2020) Physica E : low-dimensional systems and nanostructures Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications : a brief review. Phys. E Low-Dimensional Syst. Nanostructures. 117:113798. https://doi.org/10.1016/j.physe.2019.113798

    Article  CAS  Google Scholar 

  12. Kong Y, Qiu P, Wei Q, Quan W, Wang S, Qian W (2016) Refractive index and temperature nanosensor with plasmonic waveguide system. Opt Commun 371:132–137. https://doi.org/10.1016/j.optcom.2016.03.072

    Article  CAS  Google Scholar 

  13. Zynio S, Samoylov A, Surovtseva E, Mirsky V, Shirshov Y (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface Plasmon resonance. Sensors. 2:62–70. https://doi.org/10.3390/s20200062

    Article  CAS  Google Scholar 

  14. Abumazwed A, Kubo W, Tanaka T, Kirk AG (2018) Improved method for estimating adlayer thickness and bulk RI change for gold nanocrescent sensors. Sci Rep 8:6683. https://doi.org/10.1038/s41598-018-24950-7

    Article  CAS  Google Scholar 

  15. Talukdar TH, Allen GD, Kravchenko I, Ryckman JD (2019) Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing. Opt Express 27:22485–22498. https://doi.org/10.1364/OE.27.022485

    Article  CAS  Google Scholar 

  16. Wu L, Guo J, Xu H, Dai X, Xiang Y (2016) Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes. Photonics Res 4:262. https://doi.org/10.1364/prj.4.000262

    Article  CAS  Google Scholar 

  17. Asgari S, Pooretemad S, Granpayeh N (2020) Photonics and nanostructures - fundamentals and applications Plasmonic refractive index sensor based on a double concentric square ring resonator and stubs. Photonics Nanostructures - Fundam Appl 42:100857. https://doi.org/10.1016/j.photonics.2020.100857

    Article  Google Scholar 

  18. Chauhan D, Adhikari R, Saini RK, Chang SH, Dwivedi RP (2020) Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure, Optik (Stuttg). 223 165545. https://doi.org/10.1016/j.ijleo.2020.165545

  19. Kwon MS, Ku B, Kim Y (2016) Plasmofluidic disk resonators. Sci Rep 6:1–8. https://doi.org/10.1038/srep23149

    Article  CAS  Google Scholar 

  20. Heo NS, Oh SY, Ryu MY, Baek SH, Park TJ, Choi C, Huh YS, Park JP (2019) Affinity peptide-guided Plasmonic biosensor for detection of Noroviral protein and human norovirus. Biotechnol Bioprocess Eng 24:318–325. https://doi.org/10.1007/s12257-018-0410-6

    Article  CAS  Google Scholar 

  21. Sulabh V, Kaushik L, Singh S, Rajput M (2021) Kumar, Nanophotonic waveguide based on engineered horizontal-vertical slots for polarization independent bio-chemical sensing. J Opt Soc Am B 38:749. https://doi.org/10.1364/josab.417327

    Article  CAS  Google Scholar 

  22. Ashley J, D’Aurelio R, Piekarska M, Temblay J, Pleasants M, Trinh L, Rodgers TL, Tothill IE (2018) Development of a β-Lactoglobulin sensor based on SPR for milk allergens detection. Biosensors. 8:1–11. https://doi.org/10.3390/bios8020032

    Article  CAS  Google Scholar 

  23. He S, Li X, Wu Y, Wu S, Wu Z, Yang A, Tong P, Yuan J, Gao J, Chen H (2018) Highly sensitive detection of bovine β-Lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J Agric Food Chem 66:11830–11838. https://doi.org/10.1021/acs.jafc.8b04086

    Article  CAS  Google Scholar 

  24. Wang C, Zhou X, Wang H, Sun X, Guo M (2019) Interactions between β-lactoglobulin and 3,30-diindolylmethane in model system, Molecules. 24. https://doi.org/10.3390/molecules24112151

  25. Ito T, Aoki N, Tsuchiya A, Kaneko S, Suzuki K (2015) Sequential analysis of β-lactoglobulin for allergen check using QCM with a passive flow system. Chem Lett 44:981–983. https://doi.org/10.1246/cl.150309

    Article  CAS  Google Scholar 

  26. Hong J, Wang Y, Zhu L, Jiang L (2020) An electrochemical sensor based on gold-nanocluster-modified graphene screen-printed electrodes for the detection of β-Lactoglobulin in Milk. Sensors. 20:3956. https://doi.org/10.3390/s20143956

    Article  CAS  Google Scholar 

  27. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. https://doi.org/10.1021/cr2001178

    Article  CAS  Google Scholar 

  28. Lotsch HKV (2010) Springer Series in Springer Series in, 2010. https://doi.org/10.1038/nphoton.2009.262

  29. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55(10):1205–1209. https://doi.org/10.1364/JOSA.55.001205

  30. Avrutsky I (2008) Integrated optical polarizer for silicon-on-insulator waveguides using evanescent wave coupling to gap plasmonpolaritons. IEEE J Sel Top Quantum Electron 14:1509–1514. https://doi.org/10.1109/JSTQE.2008.926284

    Article  CAS  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constant of the Nobel metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  32. Mcmeekin TL, Groves ML, Hipp NJ (1964) Refractive Indices of Amino Acids, Proteins, and Related Substances, in: 1964: pp. 54–66. https://doi.org/10.1021/ba-1964-0044.ch004

  33. Edwards PJB, Jameson GB, Second P (2014) Beta-Lactoglobulin Structure and Stability of Whey Pro- teins Whey Proteins in Infant Formula

  34. Tripathi SM, Kumar A, Kumar M, Bock WJ (2012) Temperature-insensitive fiber-optic devices using multimode interference effect. Opt Lett 37(22):4570–4572. https://doi.org/10.1364/OL.37.004570

  35. Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R (2012) Silicon microring resonators. Laser Photon Rev 6:47–73. https://doi.org/10.1002/lpor.201100017

    Article  CAS  Google Scholar 

  36. Liu B, Tang C, Chen J, Xie N, Yuan J, Tang H, Zhu X (2018) Metal-substrate-enhanced magnetic dipole resonance in metamaterials for high-performance refractive index sensing. Opt Mater Express 8:2008. https://doi.org/10.1364/ome.8.002008

    Article  CAS  Google Scholar 

  37. Butt MA, Khonina SN, Kazanskiy NL (2020) Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sensors J 20:1355–1362. https://doi.org/10.1109/JSEN.2019.2944391

    Article  CAS  Google Scholar 

  38. Ajad AK, Islam MJ, Kaysir MR, Atai J (2021) Highly sensitive bio sensor based on WGM ring resonator for hemoglobin detection in blood samples. Optik (Stuttg) 226:166009. https://doi.org/10.1016/j.ijleo.2020.166009

    Article  CAS  Google Scholar 

  39. Singh RR, Kumari S, Gautam A, Priye V (2019) Glucose sensing using slot waveguide-based SOI Ring Resonator. IEEE Journal of Selected Topics in Quantum Electronics 25:1–8

  40. Wu J, Li Z, Li M, Wang Y (2021) Plasmonic refractive index sensing enhanced by anapole modes in metal-dielectric nanostructure array, J Opt (United Kingdom). 23. https://doi.org/10.1088/2040-8986/abd984

  41. Ahmadivand A (2021) Tunneling Plasmonics: vacuum Rabi oscillations in carbon nanotube mediated Electromigrated Nanojunctions. J Phys Chem C 125:782–791. https://doi.org/10.1021/acs.jpcc.0c09325

    Article  CAS  Google Scholar 

  42. Xiang C, Chan CK, J. Wang (2014) Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications, Sci Rep 4. https://doi.org/10.1038/srep03720

  43. Butt MA, Khonina SN, Kazanskiy NL (2021) Metal-insulator-metal nano square ring resonator for gas sensing applications. Waves Random Complex Media 31:146–156. https://doi.org/10.1080/17455030.2019.1568609

    Article  Google Scholar 

  44. Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur M (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41:5333–5336. https://doi.org/10.1364/ol.41.005333

    Article  CAS  Google Scholar 

  45. Dwivedi R, Kumar A, Tripathi SM (2021) Ultra high sensitive refractive index sensor using a metal under-clad ridge waveguide modal interferometer near the dispersion turning point. IEEE Sensors J 21:4674–4681. https://doi.org/10.1109/JSEN.2020.3035117

    Article  CAS  Google Scholar 

  46. Halwer M, Nutting GC, Brice BA (1951) Molecular weight of Lactoglobulin, ovalbumin, lysozyme and serum albumin by light scattering. J Am Chem Soc 73:2786–2790. https://doi.org/10.1021/ja01150a105

    Article  CAS  Google Scholar 

  47. Greve MM, Holst B (2013) Optimization of an electron beam lithography instrument for fast, large area writing at 10 kV acceleration voltage. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom 31:043202. https://doi.org/10.1116/1.4813325

    Article  CAS  Google Scholar 

  48. Xu T, Tao Z, Li H, Tan X, Li H (2017) Effects of deep reactive ion etching parameters on etching rate and surface morphology in extremely deep silicon etch process with high aspect ratio. Adv Mech Eng 9:168781401773815. https://doi.org/10.1177/1687814017738152

    Article  CAS  Google Scholar 

  49. Garifullina A, Shen AQ (2019) Optimized immobilization of biomolecules on nonspherical gold nanostructures for efficient localized surface Plasmon resonance biosensing. Anal Chem 91:15090–15098. https://doi.org/10.1021/acs.analchem.9b03780

    Article  CAS  Google Scholar 

  50. Wu X, Li Y, Liu B, Feng Y, He W, Liu Z, Liu L, Wang Z, Huang H (2016) Two-site antibody Immunoanalytical detection of food allergens by surface Plasmon resonance. Food Anal Methods 9:582–588. https://doi.org/10.1007/s12161-015-0232-5

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out in Indian Institute of Technology, Kanpur.

Funding

This work was supported by Science and Engineering Research Board, Govt. of India via project no. EMR/2016/007936.

Author information

Authors and Affiliations

Authors

Contributions

Soumya Kumari: Performed simulations, Data collection, Data curation, Writing - Original draft.

Saurabh Mani Tripathi: Conceptualization, Writing – Review and Editing.

Corresponding author

Correspondence to Soumya Kumari.

Ethics declarations

The authors ensure that accepted principles of ethical and professional conduct have been followed during this research work.

Consent to Participate

Consent was obtained from all the authors contributed in the research work.

Consent for Publication

The authors give full consent for publication of this research work.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Tripathi, S.M. Hybrid Plasmonic SOI Ring Resonator for Bulk and Affinity Bio - sensing Applications. Silicon 14, 11577–11586 (2022). https://doi.org/10.1007/s12633-022-01877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01877-3

Keywords

Navigation