Skip to main content
Log in

Independently Formed Multiple Fano Resonances for Ultra-High Sensitivity Plasmonic Nanosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We proposed a plasmonic nanosensor with an ultra-high sensitivity based on groove and ring resonator. Simulation results show that these sharp Fano profiles originate from the interference between the groove and ring resonator. The profile can be easily tuned by changing the parameters of the structure. Moreover, we introduce a new way to achieve multiple Fano resonances through independent processes by adding a side-coupled stub cavity, and the Fano resonances can be tuned independently. These characteristics offer flexibility in the design of the devices. This nanosensor yields an ultra-high sensitivity of ∼2000 nm/RIU, which is rarely seen in the previous report. Our structures may have potential applications for nanosensors, slow light, and nonlinear devices in highly integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miroshnichenko AE, Flach S, Kivshar YS (2009) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  Google Scholar 

  2. Zhang ZD, Wang HY, Zhang ZY (2012) Fano resonance in a gear-shaped Nanocavity of the metal–insulator–metal waveguide. Plasmonics 8(2):797–801

    Article  Google Scholar 

  3. Chen Z, Cao X, Song X et al (2016) Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11(1):307–313

    Article  CAS  Google Scholar 

  4. Verellen N, Sonnefraud Y, Sobhani H et al (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667

    Article  CAS  Google Scholar 

  5. Heuck M, Kristensen PT, Elesin Y et al (2013) Improved switching using Fano resonances in photonic crystal structures. Opt Lett 38(14):2466–2468

  6. Xu T, Wu YK, Luo X et al (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1(5):118–124

    Article  Google Scholar 

  7. Fang Z, Cai J, Yan Z et al (2011) Removing a wedge from a metallic Nanodisk reveals a Fano resonance. Nano Lett 11(10):4475–4479

    Article  CAS  Google Scholar 

  8. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

  9. Chen J, Li Z, Yue S et al (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12(12):2494–2498

  10. Zia R, Schuller JA, Chandran A et al (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27

    Article  CAS  Google Scholar 

  11. Lu H, Liu X, Mao D et al (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  Google Scholar 

  12. Chen Z, Chen J, Yu L et al (2015) Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10(1):131–137

    Article  CAS  Google Scholar 

  13. Chen J, Li Z, Li J et al (2011) Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19(10):9976–9985

  14. Chheang V, Lee TK, Oh GY et al (2013) Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler. Opt Express 21(18):20880–20887

    Article  Google Scholar 

  15. Cao G, Li H, Deng Y et al (2014) Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity. Plasmonics 9(5):1163–1169

    Article  CAS  Google Scholar 

  16. Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal-insulator-metal stub filters. Appl Opt 53(28):6546–6553

    Article  Google Scholar 

  17. Tao J, Huang XG, Lin X et al (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994

    Article  CAS  Google Scholar 

  18. Lu H, Liu XM, Wang LR et al (2011) Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides. Appl Phys B Lasers Opt 103(4):877–881

    Article  CAS  Google Scholar 

  19. Lu H, Liu X, Gong Y et al (2011) Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt Express 19(14):12885–12890

    Article  Google Scholar 

  20. Chen Z, Yu L, Wang L et al (2015) A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photonics Tech Lett 27(16):1695–1698

    Article  CAS  Google Scholar 

  21. Wen K, Hu Y, Chen L et al (2014) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10(1):27–32

    Article  Google Scholar 

  22. Qi J, Chen Z, Chen J et al (2014) Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt Express 22(12):14688–14695

    Article  Google Scholar 

  23. Liu N, Langguth L, Weiss T et al (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762

    Article  CAS  Google Scholar 

  24. Hao F, Sonnefraud Y, Van DP et al (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988

  25. Pang S, Huo Y, Xie Y et al (2016) Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor. Opt Commun 381:409–413

    Article  CAS  Google Scholar 

  26. Chen Y, Liu Y, Chen Z et al (2016) Fano resonance in a symmetric waveguide system with different filled insulators. Opt Commun 371:184–188

    Article  CAS  Google Scholar 

  27. Zhang Y, Li S, Zhang X et al (2016) Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt Commun 370:203–208

    Article  CAS  Google Scholar 

  28. Li S, Zhang Y, Song X et al (2016) Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Opt Express 24(14):15351–15361

    Article  Google Scholar 

  29. Han Z, Forsberg E, He S (2007) Surface Plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Tech L 19(2):91–93

    Article  Google Scholar 

  30. Johnson PB (1972) Optical constants of the Noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  31. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface Plasmon resonance. Plasmonics 10(5):1123–1131

    Article  CAS  Google Scholar 

  32. Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100(21):1–5

    Article  Google Scholar 

  33. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    Article  Google Scholar 

  34. Becker J, Trügler A, Jakab A et al (2010) The optimal aspect ratio of gold Nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

  35. Liu N, Weiss T, Mesch M (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107

    Article  CAS  Google Scholar 

  36. Dash JN, Jha R (2016) Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 11:1505–1509

    Article  CAS  Google Scholar 

  37. Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Tech L 26(6):595–598

    Article  CAS  Google Scholar 

  38. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors & Actuators B Chemical 54(1):3–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0301300) and the National Natural Science Foundation of China under Grant 11374041, Grant 11574035 and Grant 11404030 and Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), PR China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, S., Zhang, Y. et al. Independently Formed Multiple Fano Resonances for Ultra-High Sensitivity Plasmonic Nanosensor. Plasmonics 13, 107–113 (2018). https://doi.org/10.1007/s11468-016-0489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0489-6

Keywords

Navigation