Skip to main content
Log in

Side-Coupled Cavity-Induced Fano Resonance and Its Application in Nanosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A compact structure based on plasmonic metal-insulator-metal (MIM) side-coupled cavities for nanosensor is proposed and numerically simulated. Simulation results show that a typical Lorentzian and Fano-like response emerge in the transmission spectrum, and they can be easily tuned by changing the length of the side cavity and the material imbedded in the resonator. Based on above analysis, our structures offer flexibility to design nanosensor with a sensitivity of ~1820 nm/RIU and a figure of merit about 4.5 × 104. By adding another side-coupled cavity, multiple Fano resonances are achieved and the sensing properties are also investigated. Our structures may have important potential applications in highly integrated optical circuits and networks, especially for nanosensor, spectral splitter, and nonlinear devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Xu T, Wu YK, Luo XG, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59

    Google Scholar 

  3. Veronis G, Fan SH (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

  4. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539

    Article  Google Scholar 

  5. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  6. Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3(122):1–10

    Google Scholar 

  7. Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A (2014) Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 4(6789):1–7

    Google Scholar 

  8. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Phonotics 4:83–91

    Article  CAS  Google Scholar 

  9. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  Google Scholar 

  10. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  11. Lu H, Liu XM, Mao D, Wang GX (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  Google Scholar 

  12. Chen Z, Chen JJ, Yu L, Xiao JH (2014) Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal insulator metal resonator. Plasmonics 10(1):131–137

    Article  CAS  Google Scholar 

  13. Lu H, Liu X, Mao D, Gong Y, Wang G (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36(16):3233–3235

    Article  Google Scholar 

  14. Wen KH, Yan LS, Pan W, Luo B, Guo Z, Guo YH, Luo XG (2014) Electromagnetically iInduced transparency-like transmission in a compact side-coupled T-shaped resonator. J Lightwave Technol 32(9):1071–1707

    Article  Google Scholar 

  15. Chen JJ, Wang C, Zhang R, Xiao JH (2013) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37(24):5133–5135

    Article  Google Scholar 

  16. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17(9):7549–7554

    Article  CAS  Google Scholar 

  17. Chen Z, Yu L (2014) Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J 6(6):4802208

    Google Scholar 

  18. Wang GX, Lu H, Liu XM, Mao D, Duan LN (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19(4):3513–3518

    Article  CAS  Google Scholar 

  19. Chen JJ, Li Z, Zou YJ, Deng ZL, Xiao JH, Gong QH (2013) Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8:1627–1632

    Article  CAS  Google Scholar 

  20. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  CAS  Google Scholar 

  21. Miroshnichenko A, Flach S, Kivshar Y (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  CAS  Google Scholar 

  22. Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone RL (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825

    Article  CAS  Google Scholar 

  23. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  24. Becker J, Trugler A, Jakab A, Hohenester U, Sonnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167

    Article  CAS  Google Scholar 

  25. Chen Z, Wang W, Cui L, Yu L, Duan G, Zhao Y, Xiao J (2014) Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 10:721–727

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants No.11374041, 11404030 and Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Cao, X., Song, X. et al. Side-Coupled Cavity-Induced Fano Resonance and Its Application in Nanosensor. Plasmonics 11, 307–313 (2016). https://doi.org/10.1007/s11468-015-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0035-y

Keywords

Navigation