Skip to main content
Log in

Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The filter function of the metal–insulator–metal (MIM) waveguide with a gear-shaped nanocavity is investigated using the finite-difference time-domain method. Since the gear breaks the symmetric distribution of the resonance, Fano resonance occurs in the gear-shaped nanocavity. Fano resonance strongly depends on the structural parameters of the gear. Compared to the MIM waveguide with a disk-shaped nanocavity, the MIM waveguide with a gear-shaped nanocavity allows for a much more sensitive detection of small refractive index changes of the filled media inside the nanocavity, which reveals a potential sensor application of the MIM waveguide with a gear-shaped nanocavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and gratings. Springer, Berlin

    Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91. doi:10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  3. Bonod N, Reinisch R, Popov E, Nevière M (2004) Optimization of surface-plasmon-enhanced magneto-optical effects. J Opt Soc Am B 21:791–797. doi:10.1364/JOSAB.21.000791

    Article  CAS  Google Scholar 

  4. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103–093105. doi:10.1063/1.2336629

    Article  Google Scholar 

  5. Charbonneau R, Tencer M, Lahoud N, Berini P (2008) Demonstration of surface sensing using long-range surface plasmon waveguides on silica. Sens Actuators B: Chem 134:455–461. doi:10.1016/j.snb.2008.05.034

    Article  CAS  Google Scholar 

  6. Rosenzveig T, Hermannsson PG, Leosson K (2010) Modeling of polarization-dependent loss in plasmonic nanowire waveguides. Plasmonics 5:75–77. doi:10.1007/s11468-009-9118-y

    Article  CAS  Google Scholar 

  7. Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX (2010) Branched silver nanowires as controllable plasmon routers. Nano Lett 10:1950–1954. doi:10.1021/nl101168u

    Article  CAS  Google Scholar 

  8. Zhang ZY, Wang JD, Zhao YN, Lu D, Xiong ZH (2011) Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6:773–778. doi:10.1007/s11468-011-9263-y

    Article  Google Scholar 

  9. Jin XP, Huang XG, Tao J, Lin XS, Zhang Q (2010) A novel nanometeric plasmonic refractive index sensor. IEEE T Nanotechnol 9:134–137. doi:10.1109/TNANO.2009.2038909

    Article  Google Scholar 

  10. Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102–131104. doi:10.1063/1.2056594

    Article  Google Scholar 

  11. Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835. doi:10.1063/1.1835997

    Article  CAS  Google Scholar 

  12. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715. doi:10.1038/nmat2810

    Article  Google Scholar 

  13. Zhang SP, Bao K, Halas NJ, Xu HX, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663. doi:10.1021/nl200135r

    Article  CAS  Google Scholar 

  14. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988. doi:10.1021/nl802509r

    Article  CAS  Google Scholar 

  15. Spinelli P, van Lare C, Verhagen E, Polman A (2011) Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate. Opt Express 19:A303–A311. doi:10.1364/OE.19.00A303

    Article  Google Scholar 

  16. Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell Plasmon resonances to changes in dielectric environment. J Phys Chem B 108:17290–17294. doi:10.1021/jp048499x

    Article  CAS  Google Scholar 

  17. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667. doi:10.1021/nl9001876

    Article  CAS  Google Scholar 

  18. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189. doi:10.1021/nl102108u

    Article  CAS  Google Scholar 

  19. Fang ZY, Cai JY, Yan ZB, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475–4479. doi:10.1021/nl202804y

    Article  CAS  Google Scholar 

  20. Kekatpure RD, Hryciw AC, Barnard ES, Brongersma ML (2009) Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt Express 17:24112–24129. doi:10.1364/OE.17.024112

    Article  Google Scholar 

  21. Yun BF, Hu GH, Cui YP (2010) Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J Phys D Appl Phys 43:35102–35109. doi:10.1088/0022-3727/43/38/385102

    Article  Google Scholar 

  22. Gai H, Wang J, Tian Q (2007) Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt 46:2229–2233. doi:10.1364/AO.46.002229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Foundation of China (grant nos. 11004160 and 10974161) and the Innovation Fund for Ph.D. students of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZD., Wang, HY. & Zhang, ZY. Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide. Plasmonics 8, 797–801 (2013). https://doi.org/10.1007/s11468-012-9475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9475-9

Keywords

Navigation