Skip to main content
Log in

Robust Plasmonic Fano Resonances in π-Shaped Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic Fano resonances hold immense potential for biosensors and optical information processing due to their sharp spectral response. A majority of nanogap-involved complex metallic nanostructures have been demonstrated to support Fano resonances, but the gap distance between the constituents are very difficult to control without the use of sophisticated microfabrication techniques. Here, we propose a simple π-shaped metallic nanostructure that is free from the particular requirement of nanogaps to generate a strong plasmonic Fano resonance. The plasmonic Fano resonance is demonstrated to be a result of the interference between a broad magnetic dipolar mode and a narrow electric quadrupolar mode. We realize the π-shaped nanostructure experimentally by employing the angle-resolved nanosphere lithography to produce partially overlapped double metallic nanotriangles. The effect of the geometry parameters including the length of the base and the size of π-shaped nanostructure on the Fano resonance is investigated in detail. As an application example, we further show that the π-shaped double metallic nanotriangles could be used as a Fano-based sensor for refractive index sensing, in which a threefold enhancement of sensitivity is achieved as compared with the single nanotriangle-based sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  2. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002

    Article  Google Scholar 

  3. Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ (2013) Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett 13:3281–3286

    Article  CAS  Google Scholar 

  4. Liu F, Tang C, Pan J, Cao Z, Wang Z (2010) A strategy for the maximum fluorescence enhancement based on tetrahedral amorphous carbon-coated metal substrates. J Phys Chem C 114:9871–9875

    Article  CAS  Google Scholar 

  5. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75

    Article  CAS  Google Scholar 

  6. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189

    Article  CAS  Google Scholar 

  7. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  8. Hicks EM, Zhang X, Zou S, Lyandres O, Spears KG, Schatz GC, Van Duyne RP (2005) Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J Phys Chem B 109:22351–22358

    Article  CAS  Google Scholar 

  9. Xu HX, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  10. Giannini V, Rodríguez-Oliveros R, Sánchez-Gil JA (2010) Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering. Plasmonics 5:99–104

    Article  Google Scholar 

  11. Noginov M, Zhu G, Belgrave A, Bakker R, Shalaev V, Narimanov E, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    Article  CAS  Google Scholar 

  12. Pan J, Chen Z, Chen J, Zhan P, Tang C, Wang Z (2012) Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell. Opt Lett 37:1181–1183

    Article  CAS  Google Scholar 

  13. Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397:594–598

    Article  CAS  Google Scholar 

  14. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Article  CAS  Google Scholar 

  15. Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  16. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663

    Article  CAS  Google Scholar 

  17. Liu TR, Zhou ZK, Jin CJ, Wang XH (2013) Tuning triangular prism dimer into Fano resonance for plasmonic sensor. Plasmonics 8:885–890

    Article  CAS  Google Scholar 

  18. Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726

    Article  CAS  Google Scholar 

  19. Attaran A, Emami SD, Soltanian MRK, Penny A, Behbahani F, Harun SW, Ahmad H, Abdul-Rashid HA, Moghavvemi M (2014) Circuit model of Fano resonance on tetramers, pentamers, and broken symmetry pentamers. Plasmonics 9:1303–1313

    Article  Google Scholar 

  20. Niu LF, Zhang JB, Fu YH, Kulkarni S, Luky Anchuk B (2011) Fano resonance in dual-disk ring plasmonic nanostructures. Opt Express 19:22974–22981

    Article  Google Scholar 

  21. Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett 13:6287–6291

    Article  CAS  Google Scholar 

  22. Khan AD, Miano G (2013) Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8:1429–1437

    Article  CAS  Google Scholar 

  23. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  Google Scholar 

  24. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667

    Article  CAS  Google Scholar 

  25. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:47401

    Article  Google Scholar 

  26. Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475–4479

    Article  CAS  Google Scholar 

  27. Zhao J, Frank B, Burger S, Giessen H (2011) Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography. ACS Nano 5:9009–9016

    Article  CAS  Google Scholar 

  28. Liu J, Zhou Q, Shi Y, Zhao X, Zhang C (2013) Study of L-shaped resonators at terahertz frequencies. Appl Phys Lett 103:241911

    Article  Google Scholar 

  29. Rakic AD, Djurišic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  CAS  Google Scholar 

  30. Cao ZS, Pan J, Chen Z, Zhan P, Ming NB, Wang ZL (2011) Pure electric and pure magnetic resonances in near-infrared metal double-triangle metamaterial arrays. Chin Phys Lett 2:057302

    Article  Google Scholar 

  31. Pan J, Chen Z, Yan ZD, Cao ZS, Zhan P, Ming NB, Wang ZL (2011) Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography. AIP Adv 1:042114

    Article  Google Scholar 

  32. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  33. Palik ED (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  34. Marteau P, Montixi G, Obriot J, Bose T, Arnaud JS (1991) An accurate method for the refractive index measurements of liquids: application of the Kramers-Kronig relation in the liquid phase. Rev Sci Instrum 62:42–46

    Article  CAS  Google Scholar 

  35. Zhan P, Wang Z, Dong H, Sun J, Wu J, Wang HT, Zhu S, Ming N, Zi J (2006) The anomalous infrared transmission of gold films on two-dimensional colloidal crystals. Adv Mater 18:1612–1616

    Article  CAS  Google Scholar 

  36. Yan ZD, Chen X, Du W, Chen Z, Zhan P, Wang HT, Wang ZL (2014) Near-field plasmonic coupling for enhanced nonlinear absorption by femtosecond pulses in bowtie nanoantenna arrays. Appl Phys A 117:1841–1848

    Article  CAS  Google Scholar 

  37. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Program for Basic Research of China (SKPBRC) under Grant Nos. 2012CB921501, 2013CB632703, and 2012CB933800, and by the National Nature Science Foundation of China (NSFC) under Grant Nos. 11174137, 91221206, 11274160, 51271092, 21035002, and 21275070.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen or Zhenlin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Gu, P., Bao, W. et al. Robust Plasmonic Fano Resonances in π-Shaped Nanostructures. Plasmonics 10, 1159–1166 (2015). https://doi.org/10.1007/s11468-015-9908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9908-3

Keywords

Navigation