Skip to main content
Log in

The Focusing and Talbot Effect of Periodic Arrays of Metallic Nanoapertures in High-Index Medium

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Three finite-sized two-dimensional (2D) periodic arrays of metallic nanoapertures with the shape of nanowave, nanohole, and nanodot have been developed. Using water as an output medium, although the operating wavelengths are larger than the array period, both the focusing and far-field plasmon Talbot effect are experimentally observed, showing a good agreement with the 2D finite-difference time-domain (FDTD) simulation results. The focusing performance in both cases, with the output medium of air and of water, is compared. A detailed investigation of the plasmon Talbot revivals reveals that they are composed of subwavelength hotspots with the size of ∼0.5λ distributed in the same array period as the original device. Three-dimensional FDTD simulations prove that the existence of surface plasmons (SPs) exhibits an enhanced optical transmission at some SP resonant wavelengths dependent on the output medium. Additionally, it is demonstrated that the Talbot revivals provide a high-resolution mean to distinguish the slight geometric nonuniformity in periodic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  4. Coe JV, Heer JM, Teeters-Kennedy S, Tian H, Rodriguez KR (2008) Extraordinary transmission of metal films with arrays of subwavelength holes. Annu Rev Phys Chem 59:179–202

    Article  CAS  Google Scholar 

  5. Lee MH, Gao H, Henzie J, Odom TW (2007) Microscale arrays of nanoscale holes. Small 3(12):2029–2033

    Article  CAS  Google Scholar 

  6. Tamada K, Nakamura F, Ito M, Li XH, Baba A (2007) SPR-based DNA detection with metal nanoparticles. Plasmonics 2(4):185–191

    Article  CAS  Google Scholar 

  7. Yong KT, Swihart MT, Ding H, Prasad PN (2009) Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 4(2):79–93

    Article  CAS  Google Scholar 

  8. Staleva H, Skrabalak SE, Carey CR, Kose T, Xia Y, Hartland GV (2009) Coupling to light, and transport and dissipation of energy in silver nanowires. Phys Chem Chem Phys 11:5889–5896

    Article  CAS  Google Scholar 

  9. Cao L, Nome RA, Montgomery JM, Gray SK, Scherer NF (2010) Controlling plasmonic wave packets in silver nanowires. Nano Lett 10(9):3389–3394

    Article  CAS  Google Scholar 

  10. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  11. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3:388–394

    Article  CAS  Google Scholar 

  12. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  13. McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly surface plasmon polaritons. Opt Express 15(26):18119–18129

    Article  Google Scholar 

  14. McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Höök F, Zayats AV, Pollard RJ (2010) High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4(4):2210–2216

    Article  CAS  Google Scholar 

  15. Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB (2011) Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 7(12):1653–1663

    Article  CAS  Google Scholar 

  16. Lin L, Goh XM, McGuinness LP, Roberts A (2010) Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett 10(5):1936–1940

    Article  CAS  Google Scholar 

  17. Gao H, Hyun JK, Lee MH, Yang JC, Lauhon LJ, Odom TW (2010) Broadband plasmonic microlenses based on patches of nanoholes. Nano Lett 10(10):4111–4116

    Article  CAS  Google Scholar 

  18. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B 54:3–15

    Article  CAS  Google Scholar 

  19. Degiron A, Lezec HJ, Barnes WL, Ebbesen TW (2002) Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl Phys Lett 81(23):4327–4329

    Article  CAS  Google Scholar 

  20. Kim JH, Moyer PJ (2006) Transmission characteristics of metallic equilateral triangular nanohole arrays. Appl Phys Lett 89:121106

    Article  Google Scholar 

  21. Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92(18):183901

    Article  Google Scholar 

  22. Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. J Opt Soc Am B 16(10):1743–1748

    Article  CAS  Google Scholar 

  23. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9(1):235–238

    Article  CAS  Google Scholar 

  24. Huang FM, Kao TS, Fedotov VA, Chen Y, Zheludev NI (2008) Nanohole array as a lens. Nano Lett 8(8):2469–2472

    Article  CAS  Google Scholar 

  25. Wang J, Zhou W (2010) Experimental investigation of focusing of gold planar plasmonic lenses. Plasmonics 5(6):325–329

    Article  CAS  Google Scholar 

  26. Owa S, Nagasaka H (2004) Advantage and feasibility of immersion lithography. J Microlith Microfab Microsyst 3(1):97–103

    Article  CAS  Google Scholar 

  27. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  CAS  Google Scholar 

  28. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114

    Article  CAS  Google Scholar 

  29. Talbot HF (1836) Facts relating to optical science, No. IV. Philos Mag 9:401–407

    Google Scholar 

  30. Rayleigh L (1881) On copying diffraction-gratings, and on some phenomena connected therewith. Philos Mag 11(67):196–205

    Google Scholar 

  31. Patorski K (1989) The self imaging phenomenon and its applications. Prog Opt 27:1–108

    Article  Google Scholar 

  32. Liu L (1989) Lau cavity and phase locking of laser arrays. Opt Lett 14(23):1312–1314

    Article  CAS  Google Scholar 

  33. Chapman MS, Ekstrom CR, Hammond TD, Schmiedmayer J, Tannian BE, Wehinger S, Pritchard DE (1995) Near-field imaging of atom diffraction gratings: the atomic Talbot effect. Phys Rev A 51(1):R14–R17

    Article  CAS  Google Scholar 

  34. Azaña J (2005) Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers. Opt Lett 30(3):227–229

    Article  Google Scholar 

  35. Iwanow R, May-Arrioja DA, Christodoulides DN, Stegeman GI, Min Y, Sohler W (2005) Discrete Talbot effect in waveguide arrays. Phys Rev Lett 95:053902

    Article  Google Scholar 

  36. Dennis MR, Zheludev NI, García de Abajo FJ (2007) The plasmon Talbot effect. Opt Express 15(15):9692–9700

    Article  Google Scholar 

  37. Maradudin AA, Leskova TA (2009) The Talbot effect for a surface plasmon polariton. New J Phys 11:033004

    Article  Google Scholar 

  38. Wang Y, Zhou K, Zhang X, Yang K, Wang Y, Song Y, Liu S (2010) Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays. Opt Lett 35(5):685–687

    Article  Google Scholar 

  39. Li L, Fu Y, Wu H, Zheng L, Zhang H, Lu Z, Sun Q, Yu W (2011) The Talbot effect of plasmonic nanolenses. Opt Express 19(20):19365–19373

    Article  CAS  Google Scholar 

  40. Zhang W, Zhao C, Wang J, Zhang J (2009) An experimental study of the plasmonic Talbot effect. Opt Express 17(22):19757–19762

    Article  CAS  Google Scholar 

  41. Cherukulappurath S, Heinis D, Cesario J, van Hulst NF, Enoch S, Quidant R (2009) Local observation of plasmon focusing in Talbot carpets. Opt Express 17(26):23772–23784

    Article  CAS  Google Scholar 

  42. Oosten D, Spasenović M, Kuipers L (2010) Nanohole chains for directional and localized surface plasmon excitation. Nano Lett 10(1):286–290

    Article  Google Scholar 

  43. Ruffieux P, Scharf T, Herzig HP, Völkel R, Weible KJ (2006) On the chromatic aberration of microlenses. Opt Express 14(11):4687–4694

    Article  Google Scholar 

  44. Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical superlens. Nano Lett 7(2):403–408

    Article  CAS  Google Scholar 

  45. Lee HS, Yoon YT, Lee SS, Kim SH, Lee KD (2007) Color filter based on a subwavelength patterned metal grating. Opt Express 15(23):15457–15463

    Article  Google Scholar 

  46. Raether H (1988) Surface plasmons. Springer, Berlin, p 6

    Google Scholar 

  47. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13(18):6815–6820

    Article  Google Scholar 

  48. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181(3):687–702

    Article  CAS  Google Scholar 

  49. Vial A, Grimault AS, Macías D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416

    Article  Google Scholar 

  50. Isoyan A, Jiang F, Cheng YC, Cerrina F, Wachulak P, Urbanski L, Rocca J, Menoni C, Marconi M (2009) Talbot lithography: self-imaging of complex structures. J Vac Sci Technol B 27(6):2931–2937

    Article  CAS  Google Scholar 

  51. Park J, Park JH, Kim E, Ahn CW, Jang HI, Rogers JA, Jeon S (2011) Conformal solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning. Adv Mater 23:860–864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lars Friedrich for his help in performing the first optical characterization. We acknowledge the financial support by the Postdoctoral Research Fellowship from the Alexander von Humboldt Foundation, Germany. This work was partially carried out with the support of the Karlsruhe Nano Micro Facility (www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (www.kit.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiting Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Chassaing, D., Scherer, T. et al. The Focusing and Talbot Effect of Periodic Arrays of Metallic Nanoapertures in High-Index Medium. Plasmonics 8, 723–732 (2013). https://doi.org/10.1007/s11468-012-9463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9463-0

Keywords

Navigation