Skip to main content
Log in

Impact force to a rigid obstruction from a granular mass sliding down a smooth incline

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The impact force to a rigid obstruction from a granular mass sliding down a smooth incline provides insights into the solid-like and fluid-like behaviors of granular avalanches and useful information for risk assessment and engineering design against landslides. In this study, a series of 2-D flume tests were performed to systematically investigate the effects of inclination angle, sliding distance, and initial relative density on the flow front velocity and impact force on a rigid obstruction. The experimental results show that for inclination angles smaller than the critical state friction angle of sand, an increase in the sliding distance and/or initial relative density results in smaller impact forces; for higher inclination angles, the trend is reversed. Based on the experimental results, an analytical equation is proposed to estimate the flow front velocity and an empirical approach is presented to estimate the maximum impact force based on elastic solid and hydrodynamic methods. The proposed equations are found to provide more accurate predictions for the maximum impact force than similar equations in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ahmadipur A, Qiu T (2017) Experimental investigation of effect of soil density and inclination angle on impact force from a granular sliding mass on a rigid obstruction. In: Proceedings geotechnical frontiers conference, March 12–15, Orlando, FL, pp 294–303

  2. Albaba A, Lambert S, Nicot F, Chareyre B (2015) Modeling the impact of granular flow against an Obstacle. Recent advances in modeling landslides and debris flows Springer Cham 95–105

  3. Al-Mhaidib AI (2006) Influence of shearing rate on interfacial friction between sand and steel. Eng J Univ Qatar 19:1–6

    Google Scholar 

  4. Arattano M, Franzi L (2003) On the evaluation of debris flows dynamics by means of mathematical models. Nat Hazards Earth Syst Sci 3:539–544

    Article  Google Scholar 

  5. Armanini A (1997) On the dynamic impact of debris flows, recent developments on debris flows. Lect Notes Earth Sci Berl Springer 64:208–224

    Article  Google Scholar 

  6. Armanini A, Larcher M, Odorizzi M (2011) Dynamic impact of a debris flow front against a vertical wall. Ital J Eng Geol Environ 11:1041–1049

    Google Scholar 

  7. Brummund WF, Leonards GA (1973) Experimental study of static and dynamic friction between sand and typical construction materials. J Test Eval 1(2):162–165

    Article  Google Scholar 

  8. Butterfield R, Andrawes KZ (1972) On the angles of friction between sand and plane surfaces. J Terrramech 8(4):15–23

    Article  Google Scholar 

  9. Calvetti F, di Prisco CG, Vairaktaris E (2016) DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotech 12:129. https://doi.org/10.1007/s11440-016-0434-z

    Article  Google Scholar 

  10. Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–92

    Article  Google Scholar 

  11. Chang CS, Yin ZY (2011) Micromechanical modeling for behavior of silty sand with influence of fine content. Int J Solids Struct 48(19):2655–2667

    Article  Google Scholar 

  12. Chen W, Qiu T (2012) Numerical simulations of granular materials using smoothed particle hydrodynamics method. Int J Geomech ASCE 11(2):127–135

    Article  Google Scholar 

  13. Chiou MC (2005) Modeling dry granular avalanches past different obstructs: numerical simulations and laboratory analyses. Dissertation, Technical University Darmstadt, Germany

  14. Cruden DM, Varnes DJ (1996) Landslide types and processes, landslides investigation and mitigation: transportation research board, special report no. 247. In: Turner AK, Schuster RL (eds), National Research Council, National Academy Press, Washington, D.C., pp 36–75

  15. Cui P, Zeng C, Lei Y (2015) Experimental analysis on the impact force of viscous debris flow. Earth Surf Proc Land 40:1644–1655

    Article  Google Scholar 

  16. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  17. Daido A (1993) Impact force of mud debris flows on structures. In: Proceedings of IAHR congress, Tokyo 3/b, pp 211–220

  18. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J Geophys Res B Solid Earth 106(B1):553–566

    Article  Google Scholar 

  19. Domnik B, Pudasaini SP (2012) Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. J Nonnewton Fluid Mech 173:72–86

    Article  Google Scholar 

  20. Domnik B, Pudasaini SP, Katzenbach R, Miller SA (2013) Coupling of full two-dimensional and depth-averaged models for granular flows. J Nonnewton Fluid Mech 201:56–68

    Article  Google Scholar 

  21. Drake TG (1991) Granular flow: physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152

    Article  MathSciNet  Google Scholar 

  22. Eglit ME, Kulibaba VS, Naaim M (2007) Impact of a snow avalanche against an obstracle. Formation of shock waves. Cold Reg Sci Technol 50:86–96

    Article  Google Scholar 

  23. Faug T, Gauer P, Lied K, Naaim M (2008) Overrun length of avalanches overtopping catching dams: Cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J Geophys Res Earth Surf 113(F03009)

  24. Faug T, Childs P, Wyburn E, Einav I (2015) Standing jumps in shallow granular flows down smooth inclines. Phys Fluids 27(7):073304

    Article  Google Scholar 

  25. Forterre Y, Pouliquen O (2008) Flow of dense granular media. Annu Rev Fluid Mech 40:1–24

    Article  MathSciNet  Google Scholar 

  26. Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech 35:267–293

    Article  MathSciNet  Google Scholar 

  27. Greve R, Koch T, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. I. Theory. Proc R Soc A 445:399–413

    Article  Google Scholar 

  28. Hákonardóttir KM, Hogg AJ, Jóhannesson T, Tómasson GG (2003) A laboratory study of the retarding effects of braking mounds on snow avalanches. J Glaciol 49(165):191–200

    Article  Google Scholar 

  29. Hákonardóttir KM, Hogg AJ (2005) Oblique shocks in rapid granular flows. Phys Fluids 17(7):077101

    Article  MathSciNet  Google Scholar 

  30. Hauksson S, Pagliardi M, Barbolini M, Jóhannesson T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg Sci Technol 49(1):54–63

    Article  Google Scholar 

  31. Huang HP, Yang KC, Lai SW (2007) Impact forces of debris flow on filter dam. Geophys Res Abstr 9:03218

    Google Scholar 

  32. Hübl J, Holzinger G (2003) Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen: Kleinmaßstäbliche Modellversuche zur Wirkung von Murbrechern. WLS Report 50 Band 3, Im Auftrag des BMLFUW VC 7a

  33. Hungr O (2008) Simplified models of spreading flow of dry granular material. Can Geotech J 45:1156–1168

    Article  Google Scholar 

  34. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Bull Geol Soc Am 116(9–10):1240–1252

    Article  Google Scholar 

  35. Hungr O, Morgenstern NR (1984) Experiments on the flow behavior of granular materials at high velocity in an open channel. Geotechnique 34(3):405–413

    Article  Google Scholar 

  36. Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos Trans Phys Sci Eng 334:93–138

    Google Scholar 

  37. Hutter K, Wang Y, Pudasaini SP (2005) The Savage–Hutter avalanche model: how far can it be pushed? Philos Trans R Soc A 363:1507–1528

    Article  MathSciNet  Google Scholar 

  38. Iverson RM, Vallance JW (2001) New views on granular mass flows. Geology 29(2):115–118

    Article  Google Scholar 

  39. Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. J Geophys Res 109:F01015

    Article  Google Scholar 

  40. Iverson RM, Logan M, LaHusen RG, Berti M (2010) The perfect debris flow? Aggregated results from 28 large-scale experiments. J Geophys Res 115:F03005

    Article  Google Scholar 

  41. Ishikawa N, Inoue R, Hayashi K, Hasegawa Y, Mizuyama T (2008) Experimental approach on measurement of impulsive fluid force using debris flow model. In: INTERPRAEVENT 2008, conference proceedings, pp 343–354

  42. Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech Rock Eng 46(4):713–729

    Article  Google Scholar 

  43. Jiang YJ, Zhao Y, Towhata I, Liu DX (2015) Influence of particle characteristics on impact event of dry granular flow. Powder Technol 270:53–67

    Article  Google Scholar 

  44. Kattel P, Khattri KB, Pokhrel PR, Kafle J, Tuladhar BM, Pudasaini SP (2016) Simulating glacial lake outburst floods with a two-phase mass flow model. Ann Glaciol 57(71):349–358

    Article  Google Scholar 

  45. Kermani E, Qiu T, Tianbin L (2015) Simulation of collapse of granular columns using the discrete element method. Int J Geomech 15(6):04015004

    Article  Google Scholar 

  46. Kirshbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam AL (2009) A global landslide catalog for hazard applications—method, results and limitations. J Nat Hazards 52(3):561–575

    Article  Google Scholar 

  47. Lajeunesse E, Mangeney-Castelnau A, Vilotte JP (2004) Spreading of a granular mass on a horizontal plane. Phys Fluids 16(7):2371–2381

    Article  Google Scholar 

  48. Lichtenan C (1973) Berechnung von Sperren in Beton und Eisenbeton. Kolloquium Über Wildbachsperren. Mitteilungen der Forstlichen Bundesanstalt Wien. Heft 102:91–127

    Google Scholar 

  49. Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508(1):175–199

    Article  Google Scholar 

  50. Lube G, Huppert HE, Stephan R, Sparks J, Freundt A (2011) Granular column collapses down rough, inclined channels. J Fluid Mech 675:347–368

    Article  MathSciNet  Google Scholar 

  51. Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can Geotech J 47:827–841

    Article  Google Scholar 

  52. Manzella I, Labiouse V (2012) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides. https://doi.org/10.1007/s10346-011-0313-5

    Article  Google Scholar 

  53. Mast CM, Arduino P, Mackenzie-Helnwein P, Miller GR (2015) Simulating granular column collapse using the Material Point Method”. Acta Geotech 10:101–116. https://doi.org/10.1007/s11440-014-0309-0

    Article  Google Scholar 

  54. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  55. Mergili M, Fischer JT, Krenn J, Pudasaini SP (2017) r. avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci Model Dev 10(2):553

    Article  Google Scholar 

  56. Midi GDR (2004) On dense granular flows. Eur Phys J E Soft Matter Biol Phys 14(4):341–365

    Article  Google Scholar 

  57. Mizuyama T (1979) Evaluation of impact of debris flow on check dams. J Jpn Soc Eros Control Eng 32:40–49

    Google Scholar 

  58. Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1):57–71

    Article  Google Scholar 

  59. Patra AK, Bauer AC, Nichita CC, Pitman EB, Sheridan MF, Bursik M, Rupp B, Webber A, Stinton AJ, Namikawa LM, Renschler CS (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geoth Res 139(1):1–21

    Article  Google Scholar 

  60. Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11(3):542–548

    Article  MathSciNet  Google Scholar 

  61. Proske D, Suda J, Hübl J (2010) Debris flow impact estimation for breakers. Georisk 5(2):143–155

    Google Scholar 

  62. Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf 117(F03010)

    Article  Google Scholar 

  63. Pudasaini SP, Wang Y, Hutter K (2005) Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulation. Philos Trans R Soc Lond A, Math Phys Eng Sci 363(1832):1551–1571

    Article  MathSciNet  Google Scholar 

  64. Pudasaini SP, Hutter K, Hsiau SS, Tai SC, Wang Y, Katzenbach R (2007) Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys Fluids 19(5):053302

    Article  Google Scholar 

  65. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin, p 602

    Google Scholar 

  66. Pudasaini SP, Kröner C (2008) Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Phys Rev E 78(4):041308

    Article  Google Scholar 

  67. Pudasaini SP (2011) Some exact solutions for debris and avalanche flows. Phys Fluids 23(4):043301

    Article  Google Scholar 

  68. Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157:124–132

    Article  Google Scholar 

  69. Pudasaini SP, Fischer JT (2016) A mechanical erosion model for two-phase mass flows. arXiv:1610.01806

  70. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  MathSciNet  Google Scholar 

  71. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout, part I. Analysis. Acta Mechanica 86(1–4):201–223

    Article  MathSciNet  Google Scholar 

  72. Scotton P, Deganutti AM (1997) Phreatic line and dynamic impact in laboratory debris flow experiments. In: Proceedings of the 1st international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, ASCE, pp 777–786

  73. Teufelsbauer H, Wang H, Pudasaini SP, Borja RI, Wu W (2011) DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech 6:119–133

    Article  Google Scholar 

  74. USGS (2013) http://landslides.usgs.gov/learning/majorls.php. Accessed 10 Aug 2017

  75. USGS (2014) https://www2.usgs.gov/blogs/features/usgs_top_story/landslide-in-washington-state/107/. Accessed 10 Aug 2017

  76. Valentino R, Barla G, Montrasio L (2008) Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng 41(1):153–177

    Article  Google Scholar 

  77. Zanuttigh B, Lamberti A (2006) Experimental analysis of the impact of dry avalanches on structures and implication for debris flows. J Hydraul Res 44(4):522–534

    Article  Google Scholar 

  78. Zenit R (2005) Computer simulations of the collapse of a granular column. Phys Fluids 17(3):031703

    Article  Google Scholar 

Download references

Acknowledgements

Support of this study is provided by the US National Science Foundation under Award # CMMI-1453103. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadipur, A., Qiu, T. Impact force to a rigid obstruction from a granular mass sliding down a smooth incline. Acta Geotech. 13, 1433–1450 (2018). https://doi.org/10.1007/s11440-018-0727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0727-5

Keywords

Navigation