Skip to main content
Log in

Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We present a Lagrangian formulation for simulating the continuum hydrodynamics of dry granular flows based on multiplicative elastoplasticity theory for finite deformation calculations. The formulation is implemented within the smoothed particle hydrodynamics (SPH) method along with a variant of the usual dynamic boundary condition. Three benchmark simulations on dry sands are presented to validate the model: (a) a set of plane strain collapse tests, (b) a set of 3D collapse tests, and (c) a plane strain simulation of the impact force generated by granular flow on a rigid wall. Comparison with experimental results suggests that the formulation is sufficiently robust and accurate to model the continuum hydrodynamics of dry granular flows in a laboratory setting. Results of the simulations suggest the potential of the formulation for modeling more complex, field-scale scenarios characterized by more elaborate geometry and multi-physical processes. To the authors’ knowledge, this is the first time the multiplicative plasticity approach has been applied to granular flows in the context of the SPH method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

After Moriguchi et al. [34]

Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075

    Article  MathSciNet  Google Scholar 

  2. Bandara S, Ferrari A, Laloui L (2016) Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. Int J Numer Anal Methods Geomech 40(9):1358–1380

    Article  Google Scholar 

  3. Becker PA, Idelsohn SR (2016) A multiresolution strategy for solving landslides using the particle finite element method. Acta Geotech 11:643–657

    Article  Google Scholar 

  4. Bonet J, Lok TSL (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180:97–115

    Article  MathSciNet  MATH  Google Scholar 

  5. Borja RI (2013) Plasticity modeling & computation. Springer, Berlin

    MATH  Google Scholar 

  6. Borja RI, White JA (2010) Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech 5(1):1–14

    Article  Google Scholar 

  7. Borja RI, Liu X, White JA (2012) Multiphysics hillslope processes triggering landslides. Acta Geotech 7(4):261–269

    Article  Google Scholar 

  8. Borja RI, White JA, Liu X, Wu W (2012) Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. Int J Numer Anal Methods Geomech 38(2):236–248

    Article  Google Scholar 

  9. Bui HH, Fukugawa R (2013) An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure. Int J Numer Anal Methods Geomech 37:31–50

    Article  Google Scholar 

  10. Bui HH, Sako K, Fukugawa R (2007) Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method. J Terrramech 44:339–346

    Article  Google Scholar 

  11. Bui HH, Fukugawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32:1537–1570

    Article  MATH  Google Scholar 

  12. Bui HH, Fukugawa R, Sako K, Wells C (2011) Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Géotechnique 361(7):565–574

    Article  Google Scholar 

  13. Calvetti F, di Prisco CG, Vairaktaris E (2017) DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotech 12:129–144

    Article  Google Scholar 

  14. Camargo J, Quadros Velloso R, Vargas EA Jr (2016) Numerical limit analysis of three-dimensional slope stability problems in catchment areas. Acta Geotech 11(6):1369–1383

    Article  Google Scholar 

  15. Cen D, Huang D, Ren F (2017) Shear deformation and strength of the interphase between the soilrock mixture and the benched bedrock slope surface. Acta Geotech 12:391–413

    Article  Google Scholar 

  16. Chen W, Qiu T (2011) Numerical simulations of granular materials using smoothed particle hydrodynamics method. Geotech Spec Publ ASCE 217:157–164

    Google Scholar 

  17. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425:1068–1082

    Article  Google Scholar 

  19. Fern EJ, Soga K (2015) The role of constitutive models in MPM simulations of granular column collapses. Acta Geotech 11(3):659–678

    Article  Google Scholar 

  20. Gholami Khorzani M, Galindo-Torres SA, Scheuermann A, Williams DJ (2017) SPH approach for simulating hydro-mechanical processes with large deformations and variable permeabilities. Acta Geotech. https://doi.org/10.1007/s11440-017-0610-9

    Google Scholar 

  21. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  22. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662

    Article  MATH  Google Scholar 

  23. Guo X, Peng C, Wu W, Wang Y (2016) A hypoplastic constitutive model for debris materials. Acta Geotech 11:1217–1229

    Article  Google Scholar 

  24. He X, Liang D (2015) Study of the runout of granular columns with SPH methods. Int J Offshore Polar Eng 25(4):281–287

    Article  MathSciNet  Google Scholar 

  25. Kakogiannou E, Sanavia L, Nicot F, Darve F, Schrefler BA (2016) A porous media finite element approach for soil instability including the second-order work criterion. Acta Geotech 11(4):805–825

    Article  Google Scholar 

  26. Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L (2015) Peridynamics simulations of geomaterial fragmentation by impulse loads. Int J Numer Anal Methods Geomech 39(12):1304–1330

    Article  Google Scholar 

  27. Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl Mech 36:1–6

    Article  MATH  Google Scholar 

  28. Lei X, Yang Z, He S, Liu E, Wong H, Li X (2017) Numerical investigation of rainfall-induced fines migration and its influences on slope stability. Acta Geotech 12(6):1431–1446

    Article  Google Scholar 

  29. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle methods. World Scientific, Singapore

    Book  MATH  Google Scholar 

  30. Lube G, Huppert HE, Stephen R, Sparks J, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175–199

    Article  MATH  Google Scholar 

  31. Lube G, Huppert HE, Stephen R, Sparks J, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72(4):041301

    Article  Google Scholar 

  32. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  33. Meng X, Wang Y, Wang C, Fischer J-T (2017) Modeling of unsaturated granular flows by a two-layer approach. Acta Geotech 12(3):677–701

    Article  Google Scholar 

  34. Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4:57–71

    Article  Google Scholar 

  35. Nguyen CT, Nguyen CT, Bui HH, Nguyen GD, Fukugawa R (2017) A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides 14(1):69–81

    Article  Google Scholar 

  36. Nonoyama H, Moriguchi S, Sawada K, Yashima A (2015) Slope stability analysis using smoothed particle hydrodynamics (SPH) method. Soils Found 55(2):458–470

    Article  Google Scholar 

  37. Pastor M, Yague A, Stickle MM, Manzanal D, Mira P (2018) A two-phase SPH model for debris flow propagation. Int J Numer Anal Methods Geomech 42(3):418–448

    Article  Google Scholar 

  38. Peng C, Wu W, Yu HS, Wang C (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech 10:703–717

    Article  Google Scholar 

  39. Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotech 11:1231–1247

    Article  Google Scholar 

  40. Pudasaini SP, Hutter K, Hsiau SS, Tai SC, Wang Y, Katzenbach R (2007) Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys Fluids 19:053302

    Article  MATH  Google Scholar 

  41. Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99:61–112

    Article  MathSciNet  MATH  Google Scholar 

  42. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  43. Siriaksorn T, Chi S-W, Foster C, Mahdavi A (2018) \(u\)\(p\) semi-Lagrangian reproducing kernel formulation for landslide modeling. Int J Numer Anal Methods Geomech 42(2):231–255

    Article  Google Scholar 

  44. Souza Neto E, Peric D, Owens D (2008) Computational methods for plasticity: theory and applications. Wiley, London

    Book  Google Scholar 

  45. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  MATH  Google Scholar 

  46. Szewc K (2017) Smoothed particle hydrodynamics modeling of granular column collapse. Granul Matter 19:3

    Article  Google Scholar 

  47. Teufelsbauer H, Wang y, Pudasaini SP, Borja RI, Wu W (2011) DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech 6:119–133

    Article  Google Scholar 

  48. USGS (2018) USGS Geologists join efforts in Montecito to assess debris-flow aftermath. https://www.usgs.gov/news/usgs-geologists-join-efforts-montecito-assess-debris-flow-aftermath. Accessed 2 Mar 2018

  49. Vidal Y, Bonet J, Huerta A (2007) Stabilized updated Lagrangian corrected SPH for explicit dynamic problems. Int J Numer Methods Eng 69:2687–2710

    Article  MathSciNet  MATH  Google Scholar 

  50. Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. Comput Model Eng Sci 14(3):181–198

    MathSciNet  MATH  Google Scholar 

  51. Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  52. Zhang W, Maeda K, Saito H, Li Z, Huang Y (2016) Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model. Acta Geotech 11:1401–1418

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support of the National Council for Scientific and Technological Development in Brazil. Additional funding was provided by the John A. Blume Earthquake Engineering Center at Stanford University. This work was supported in part by the U.S. National Science Foundation under Award Number CMMI-1462231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo I. Borja.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fávero Neto, A.H., Borja, R.I. Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity. Acta Geotech. 13, 1027–1040 (2018). https://doi.org/10.1007/s11440-018-0700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0700-3

Keywords

Navigation