Skip to main content
Log in

The loop effects on the chargino decays \(\tilde{\chi }_1^\pm \rightarrow \tilde{\chi }_1^0 f f^\prime \) in the MSSM

  • Article
  • High-Energy Physics
  • Published:
Chinese Science Bulletin

Abstract

The lighter chargino three body decays \(\tilde{\chi }_1^\pm \rightarrow \tilde{\chi }_1^0 f f^\prime \) via the \(W^\pm \) boson and the charged Higgs boson \(H^\pm \) were studied in the R-parity conserved Minimal Supersymmetric Standard Model (MSSM). We treat \(\tilde{\chi }_1^\pm \) decays as production and decay of \(W^\pm \) and \(H^\pm \): i.e., \(\tilde{\chi }_1^\pm \rightarrow \tilde{\chi }_1^0 W^\pm (H^\pm ) \rightarrow \tilde{\chi }_1^0 f f^\prime \). Both higgsino-like and wino-like \(\tilde{\chi }_1^\pm \) decays were well investigated. These decays are calculated at 1-loop level and the loop corrections are found to be less than three percent. The signal of the charged Higgs \(H^\pm \) production from \(\tilde{\chi }_1^\pm \) decays is discussed. It will offer important information about the chargino and neutralino sector, as well as the charged Higgs sector in the MSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nilles HP (1984) Supersymmetry, supergravity and particle physics. Phys Rep 110:1–162

    Article  Google Scholar 

  2. Haber HE, Kane GL (1985) The search for supersymmetry: probing physics beyond the standard model. Phys Rep 117:75–263

    Article  Google Scholar 

  3. Martin SP (2010) A supersymmety primer. In: Kane GL (ed) Perspectives on supersymmetry II. World Scientific, Singapore

    Google Scholar 

  4. Drees M, Godbole R, Roy P (2004) Theory and phenomenology of sparticles: an account of four-dimensional N = 1 supersymmetry in high energy physics. World Scientific, Singapore

    Google Scholar 

  5. ATLAS Collaboration (1999) ATLAS detector and physics performance. Technical Design Report

  6. ECFA/DESY LC Physics Working Group (Aguilar-Saavedra JA et al.) (2001) TESLA: the superconducting electron positron linear collider with an integrated X-ray laser laboratory. Part 3. Physics at an \(e^{+}\) \(e^{-}\) linear collider. Technical Design Report

  7. ILC Collaboration (Aarons G et al.) (2007) International linear collider reference design report vol. 2: Physics at the ILC. arXiv:0709.1893

  8. Drees M, Hollik W, Xu QJ (2007) One-loop calculations of the decay of the next-to-lightest neutralino in the MSSM. J High Energy Phys 02:032

    Article  Google Scholar 

  9. Djouadi A, Mambrini Y, Mühlleitner M (2001) Chargino and neutralino decays revisited. Eur Phys J C 20:563–584

    Article  Google Scholar 

  10. Bharucha A, Heinemeyer S, Von der Pahlen F et al (2012) Neutralino decays in the complex MSSM at one-loop: a comparison of on-shell renormalization schemes. Phys Rev D 86:075023

    Article  Google Scholar 

  11. Baer H, Berggren M, List J et al (2013) Physics case for the ILC project: perspective from Beyond the Standard Model. Proceedings of community summer study 2013: snowmass on the Mississippi, Minneapolis, MN, USA. http://www.snowmass2013.org/tiki-index.php

  12. Gunion JF, Haber HE, Barnett RM et al (1987) Calculation and phenomenology of two-body decays of neutralinos and charginos to \(W\), \(Z\), and Higgs bosons. Int J Mod Phys A 2:1145

    Article  Google Scholar 

  13. Baer H, Bartl A, Karatas D et al (1989) Searching for supersymmetry at \(e^{+}\) \(e^{-}\) supercolliders. Int J Mod Phys A 4:4111

    Article  Google Scholar 

  14. Gunion JF, Haber HE (1988) Two-body decays of neutralinos and charginos. Phys Rev D 37:2515

    Article  Google Scholar 

  15. Gunion JF, Haber HE (1988) Higgs bosons in supersymmetric models. 3. Decays into neutralinos and charginos. Nucl Phys B 307:445

    Article  Google Scholar 

  16. Zhang RY, Ma WG, Wan LH (2002) Supersymmetric electroweak corrections to the chargino decay into neutralino and \(W\) boson. J Phys G 28:169

    Article  Google Scholar 

  17. Zhou PJ, Ma WG, Zhang RY et al (2002) Supersymmetric electroweak corrections to the decay of the heavy chargino into the light chargino and \(Z\) boson. Commun Theor Phys 38:173

    Google Scholar 

  18. Baro N, Boudjema F (2009) Automatised full one-loop renormalisation of the MSSM II: the chargino–neutralino sector, the sfermion sector and some applications. Phys Rev D 80:076010

    Article  Google Scholar 

  19. Fujimoto J, Ishikawa T, Kurihara Y et al (2007) Two-body and three-body decays of charginos in one-loop order in the MSSM. Phys Rev D 75:113002

    Article  Google Scholar 

  20. Muhlleitner M, Djouadi A, Mambrini Y (2005) SDECAY: a fortran code for the decays of the supersymmetric particles in the MSSM. Comput Phys Commun 168:46

    Article  Google Scholar 

  21. Liebler S, Porod W (2011) Electroweak corrections to neutralino and chargino decays into a \(W\)-boson in the (N)MSSM. Nucl Phys B 849:213

    Article  Google Scholar 

  22. Eberl H, Gajdosik T, Majerotto W et al (2005) \(CP\)-violating asymmetry in chargino decay into neutralino and \(W\) boson. Phys Lett B 618:171

    Article  Google Scholar 

  23. Heinemeyer S, Von der Pahlen F, Schappacher C (2012) Chargino decays in the complex MSSM: a full one-loop analysis. Eur Phys J C 72:1892

    Article  Google Scholar 

  24. Fritzsche T, Hollik W (2002) Complete one-loop corrections to the mass spectrum of charginos and neutralinos in the MSSM. Eur Phys J C 24:619–629

    Article  Google Scholar 

  25. Oller W, Eberl H, Majerotto W et al (2003) Analysis of the chargino and neutralino mass parameters at one-loop level. Eur Phys J C 29:563–572

    Article  Google Scholar 

  26. Eberl H, Kincel M, Majerotto W et al (2001) One-loop corrections to the chargino and neutralino mass matrices in the on-shell scheme. Phys Rev D 64:115013

    Article  Google Scholar 

  27. Guasch J, Hollik W, Sola J (2002) Fermionic decays of sfermions: a complete discussion at one-loop order. J High Energy Phys 10:040

    Article  Google Scholar 

  28. Chatterjee A, Drees M, Kulkarni S et al (2012) On the on-shell renormalization of the chargino and neutralino masses in the MSSM. Phys Rev D 85:075013

    Article  Google Scholar 

  29. Fritzsche T, Heinemeyer S, Rzehak H et al (2012) Heavy scalar top quark decays in the complex MSSM: a full one-loop analysis. Phys Rev D 86:035014

    Article  Google Scholar 

  30. Lahanas AB, Tamvakis K, Tracas ND (1994) One loop corrections to the neutralino sector and radiative electroweak breaking in the MSSM. Phys Lett B 324:387

    Article  Google Scholar 

  31. Pierce D, Papadopoulos A (1994) Radiative corrections to neutralino and chargino masses in the minimal supersymmetric model. Phys Rev D 50:565

    Article  Google Scholar 

  32. Pierce D, Papadopoulos A (1994) The complete radiative corrections to the gaugino and Higgsino masses in the minimal supersymmetric model. Nucl Phys B 430:278

    Article  Google Scholar 

  33. Fowler A, Weiglein G (2010) Precise predictions for Higgs production in neutralino decays in the complex MSSM. J High Energy Phys 1001:108

    Article  Google Scholar 

  34. Denner A (1993) Techniques for calculation of electroweak radiative corrections at the one loop level and results for \(W\) physics at LEP-200. Fortschr Phys 41:307

    Google Scholar 

  35. Frank M, Heinemeyer S, Hollik W et al (2002) The Higgs boson masses of the complex MSSM: a complete one loop calculation. In: Nath P, Zerwas PM (eds) Proceedings of 10th international conference on supersymmetry, Hamburg, Germany, 2002. pp 637–647

  36. Chankowski PH, Pokorski S, Rosiek J (1994) Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector. Nucl Phys B 423:437

    Article  Google Scholar 

  37. Dabelstein A (1995) The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses. Z Phys C 67:495

    Article  Google Scholar 

  38. Frank M, Heinemeyer S, Hollik W et al (2002) FeynHiggs1.2: hybrid MS-bar/on-shell renormalization for the \(CP\) even Higgs boson sector in the MSSM

  39. Particle Data Group, Beringer J et al (2012) The review of particle physics. Phys Rev D 86:010001

    Google Scholar 

  40. Heinemeyer S, Hollik W, Weiglein G (1999) The masses of the neutral \(CP\)-even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur Phys J C 9:343

    Google Scholar 

  41. Degrassi G, Heinemeyer S, Hollik W et al (2003) Towards high precision predictions for the MSSM Higgs sector. Eur Phys J C 28:133

    Article  Google Scholar 

  42. Frank M, Hahn T, Heinemeyer S et al (2007) The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. J High Energy Phys 0702:047

    Article  Google Scholar 

  43. Hahn T (2001) Generating Feynman diagrams and amplitudes with FeynArts 3. Comput Phys Commun 140:418

    Article  Google Scholar 

  44. Hahn T, Schappacher C (2002) The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc. Comput Phys Commun 143:54

    Article  Google Scholar 

  45. Hahn T (2000) Automatic loop calculations with FeynArts, FormCalc, and LoopTools. Nucl Phys Proc Suppl 89:231

    Article  Google Scholar 

  46. Hahn T (2004) New features in FormCalc 4. Nucl Phys Proc Suppl 135:333

    Article  Google Scholar 

  47. ’t Hooft G, Veltman M (1979) Scalar one loop integrals. Nucl Phys B 153:365

    Article  Google Scholar 

  48. The CDF and DO Collaboration (Jaffre M) (2012) SUSY searches at Tevatron. EPJ Web Conf 28:09006

  49. Collaboration ATLAS (Pralavorio P) (2013) SUSY searches at ATLAS. Front Phys China 8:248–256

    Google Scholar 

  50. Collaboration CMS (Hooberman B) (2013) Searches for top and bottom squarks in pp collisions \(\sqrt{S}\) = 8 TeV. EPJ Web Conf 49:15012. doi:10.1051/epjconf/20134915012

  51. The ALTAS Collaboration (2013) Search for charged Higgs bosons in the tau+jets final state with pp collision data recorded at \(\sqrt{S}\) = 8 TeV with the ATLAS experiment. ATLAS-CONF-2013-090, ATLAS-COM-CONF-2013-107

  52. The CMS Collaboration (2012) Updated search for a light charged Higgs boson in top quark decays in pp collision at \(\sqrt{S}\) = 7 TeV. CMS-PAS-HIG-12-052

  53. Baer H, Barger V, Huang P et al (2012) Radiative natural SUSY with a 125 GeV Higgs boson. Phys Rev Lett 109:161802

    Article  Google Scholar 

  54. Baer H, Barger V, Huang P et al (2012) Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass. Phys Rev D 87:115028

    Article  Google Scholar 

  55. Cao JJ, Han CC, Wu L et al (2012) Probing natural SUSY from stop pair production at the LHC. J High Energy Phys 1211:39

    Article  Google Scholar 

  56. Han CC, Wang F, Yang JM (2013) Natural SUSY from SU (5) Orbifold GUT. J High Energy Phys 1311:197

    Article  Google Scholar 

  57. Baer H, Barger V, Huang P et al (2013) Naturalness, supersymmetry and light Higgsinos: a snowmass whitepaper. arXiv:1306.2926

  58. Han CC, Hikasa KI, Wu L et al (2013) Current experimental bounds on stop mass in natural SUSY. J High Energy Phys 1310:216

    Article  Google Scholar 

  59. Han CC, Kobakhidze A, Liu N et al (2013) Probing light higgsinos in natural SUSY from monojet signals at the LHC. arXiv:1310.4274

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11147023, 11305044 and 11235005) and Zhejiang Provincial Natural Science Foundation (LQ12A05003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Xu or Zhenjun Xiao.

About this article

Cite this article

Xu, Q., Xu, S., Xiao, Z. et al. The loop effects on the chargino decays \(\tilde{\chi }_1^\pm \rightarrow \tilde{\chi }_1^0 f f^\prime \) in the MSSM . Chin. Sci. Bull. 59, 1968–1977 (2014). https://doi.org/10.1007/s11434-014-0289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0289-3

Keywords

Navigation