Skip to main content
Log in

A room-temperature magnetic semiconductor from a Co-Fe-Nb-B metallic glass

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Magnetic semiconductors with Curie temperatures higher than room temperature show potential for developing spintronic devices with combined data processing and storage functions for next-generation computing systems. In this study, we present an n-type Co19.8Fe8.6Nb4.3B6.0O61.3 magnetic semiconductor with a high Curie temperature of ∼559 K. This magnetic semiconductor has a room-temperature resistivity of ∼2.10 × 104 Å cm and a saturation magnetization of ∼76 emu/cm3. The n-type Co19.8Fe8.6Nb4.3B6.0O61.3 magnetic semiconductor was deposited on p-type silicon to form a heterojunction, exhibiting a rectifying characteristic. Our results provide the design principles for discovering high Curie temperature magnetic semiconductors with determined conduction types, which would play an essential role in realizing nonvolatile spin-based transistors that break free from the confines of currently established Si-based information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951 (1998).

    Article  ADS  Google Scholar 

  2. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).

    Article  ADS  Google Scholar 

  3. K. Ando, Science 312, 1883 (2006).

    Article  Google Scholar 

  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  ADS  Google Scholar 

  5. A. H. MacDonald, P. Schiffer, and N. Samarth, Nat. Mater. 4, 195 (2005), arXiv: cond-mat/0503185.

    Article  ADS  Google Scholar 

  6. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854 (2001).

    Article  ADS  Google Scholar 

  7. L. Chen, X. Yang, F. Yang, J. Zhao, J. Misuraca, P. Xiong, and S. von Molnár, Nano Lett. 11, 2584 (2011).

    Article  ADS  Google Scholar 

  8. H. Wang, S. Sun, J. Lu, J. Xu, X. Lv, Y. Peng, X. Zhang, Y. Wang, and G. Xiang, Adv. Funct. Mater. 30, 2002513 (2020).

    Article  Google Scholar 

  9. Y. Yamada, K. Ueno, T. Fukumura, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, and M. Kawasaki, Science 332, 1065 (2011).

    Article  ADS  Google Scholar 

  10. F. Xiu, Y. Wang, J. Kim, P. Upadhyaya, Y. Zhou, X. Kou, W. Han, R. K. Kawakami, J. Zou, and K. L. Wang, ACS Nano 4, 4948 (2010).

    Article  Google Scholar 

  11. W. Liu, H. Zhang, J. A. Shi, Z. Wang, C. Song, X. Wang, S. Lu, X. Zhou, L. Gu, D. V. Louzguine-Luzgin, M. Chen, K. Yao, and N. Chen, Nat. Commun. 7, 13497 (2016).

    Article  ADS  Google Scholar 

  12. N. Chen, K. Fang, H. Zhang, Y. Zhang, W. Liu, K. Yao, and Z. Zhang, J. Semicond. 40, 081510 (2019).

    Article  ADS  Google Scholar 

  13. A. Inoue, and A. Takeuchi, Acta Mater. 59, 2243 (2011).

    Article  ADS  Google Scholar 

  14. S. Yin, C. Xiong, C. Chen, and X. Zhang, Phys. Chem. Chem. Phys. 22, 8672 (2020).

    Article  Google Scholar 

  15. Y. Zhang, S. Zhao, C. Song, W. Liu, K. Yao, and N. Chen, Mater. Des. 143, 65 (2018).

    Article  Google Scholar 

  16. K. Fang, Y. Zhang, Z. Zhang, and N. Chen, J. Alloys Compd. 797, 606 (2019).

    Article  Google Scholar 

  17. Y. Zhang, L. Zhou, S. Tao, Y. Jiao, J. Li, K. Zheng, Y. Hu, K. Fang, C. Song, X. Zhong, L. Xu, K. F. Yao, Z. Zhang, and N. Chen, Sci. China Mater. 64, 2305 (2021).

    Article  Google Scholar 

  18. X. Wang, X. Li, N. Chen, and T. Zhang, Front. Mater. 9, 891135 (2022).

    Article  ADS  Google Scholar 

  19. C. Suryanarayana, and A. Inoue, Int. Mater. Rev. 58, 131 (2013).

    Article  Google Scholar 

  20. K. F. Yao, L. X. Shi, S. Q. Chen, Y. Shao, N. Chen, and J. L. Jia, Acta Phys. Sin. 67, 016101 (2018).

    Article  Google Scholar 

  21. W. Zhang, H. Miao, Y. Li, C. Chang, G. Xie, and X. Jia, J. Alloys Compd. 707, 57 (2017).

    Article  Google Scholar 

  22. Q. Wang, G. Zhang, J. Zhou, C. Yuan, and B. Shen, J. Alloys Compd. 820, 153105 (2020).

    Article  Google Scholar 

  23. F. Fang, C.-P. Zhao, and W. Yang, Sci. China-Phys. Mech. Astron. 54, 581 (2011).

    Article  ADS  Google Scholar 

  24. J. Wang, Y. Di, Z. Fang, S. Guan, and T. Zhang, J. Non-Crystalline Solids 454, 39 (2016).

    Article  ADS  Google Scholar 

  25. X. Tong, Y. Zhang, Y. Wang, X. Liang, K. Zhang, F. Zhang, Y. Cai, H. Ke, G. Wang, J. Shen, A. Makino, and W. Wang, J. Mater. Sci. Tech. 96, 233 (2022).

    Article  Google Scholar 

  26. Z. Dan, Y. Yamada, and A. Makino, IEEE Trans. Magn. 50, 2003104 (2014).

    Google Scholar 

  27. T. Itoi, and A. Inoue, Mater. Trans. JIM 41, 1256 (2000).

    Article  Google Scholar 

  28. T. Itoi, T. Takamizawa, Y. Kawamura, and A. Inoue, Scripta Mater. 45, 1131 (2001).

    Article  Google Scholar 

  29. T. Gloriant, S. Suriñach, and M. D. Baró, J. Non-Crystalline Solids 333, 320 (2004).

    Article  ADS  Google Scholar 

  30. W. F. Gale, and T. C. Totemeier, Smithells Metals Reference Book (Elsevier Butterworth-Heinemann, Burlington, 2004).

    Google Scholar 

  31. D. V. Baxter, D. Ruzmetov, J. Scherschligt, Y. Sasaki, X. Liu, J. K. Furdyna, and C. H. Mielke, Phys. Rev. B 65, 212407 (2002), arXiv: cond-mat/0202508.

    Article  ADS  Google Scholar 

  32. S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, Adv. Mater. 15, 1409 (2003).

    Article  Google Scholar 

  33. J. Robertson, J. Non-Crystalline Solids 354, 2791 (2008).

    Article  ADS  Google Scholar 

  34. K. A. Stewart, V. Gouliouk, D. A. Keszler, and J. F. Wager, Solid-State Electron. 137, 80 (2017).

    Article  ADS  Google Scholar 

  35. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).

    Article  Google Scholar 

  36. T. Onozato, T. Katase, A. Yamamoto, S. Katayama, K. Matsushima, N. Itagaki, H. Yoshida, and H. Ohta, J. Phys.-Condens. Matter 28, 255001 (2016).

    Article  ADS  Google Scholar 

  37. H. Lu, Y. M. Zhao, S. E. Saji, X. Yin, A. Wibowo, C. S. Tang, S. Xi, P. Cao, M. Tebyetekerwa, B. Liu, M. Heggen, R. E. Dunin-Borkowski, A. Tricoli, A. T. S. Wee, H. T. Nguyen, Q. B. Yan, and Z. Yin, Appl. Catal. B-Environ. 304, 121001 (2022).

    Article  Google Scholar 

  38. J. M. Xu, and J. P. Cheng, J. Alloys Compd. 686, 753 (2016).

    Article  Google Scholar 

  39. Y. Matsumoto, J. Solid State Chem. 126, 227 (1996).

    Article  ADS  Google Scholar 

  40. A. Inoue, A. Makino, and T. Mizushima, J. Magn. Magn. Mater. 215–216, 246 (2000).

    Article  ADS  Google Scholar 

  41. R. B. Schwarz, T. D. Shen, U. Harms, and T. Lillo, J. Magn. Magn. Mater. 283, 223 (2004).

    Article  ADS  Google Scholar 

  42. Z. Z. Yang, L. Zhu, S. S. Jiang, C. Zhu, Q. H. Xu, Y. Lin, F. G. Chen, and Y. G. Wang, J. Alloys Compd. 904, 164067 (2022).

    Article  Google Scholar 

  43. Z.-B. Jiao, H.-X. Li, Y. Wu, J.-E. Gao, S.-L. Wang, S. Yi, and Z.-P. Lu, Sci. China-Phys. Mech. Astron. 53, 430 (2010).

    Article  ADS  Google Scholar 

  44. G. Ding, F. Jiang, X. Song, L. H. Dai, and M.-Q. Jiang, Sci. China-Phys. Mech. Astron. 65, 264613 (2022).

    Article  ADS  Google Scholar 

  45. L.-T. Zhang, Y.-J. Duan, D. Crespo, E. Pineda, Y.-J. Wang, J.-M. Pelletier, and J.-C. Qiao, Sci. China-Phys. Mech. Astron. 64, 296111 (2022).

    Article  ADS  Google Scholar 

  46. L. Yu, X. Guo, G. Wang, B. Sun, D. Han, C. Chen, J. Ren, and W. Wang, Sci. China-Phys. Mech. Astron. 65, 264611 (2022).

    Article  ADS  Google Scholar 

  47. R. Xue, L. Zhao, Y. Cai, J. Yi, J. Cheng, P. Wen, W. Wang, M. Pan, and H. Bai, Sci. China-Phys. Mech. Astron. 65, 246111 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51922053).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, YZ., Louzguine-Luzgin, D.V., Yao, KF. et al. A room-temperature magnetic semiconductor from a Co-Fe-Nb-B metallic glass. Sci. China Phys. Mech. Astron. 66, 246111 (2023). https://doi.org/10.1007/s11433-022-2042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2042-x

Keywords

Navigation