Skip to main content
Log in

Tunable electrode-dependent switching characteristics of Se-Te-In chalcogenide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chalcogenide glasses have garnered significant interest as potential materials for the creation of high-density, three-dimensional stackable cross-point array structures, particularly for memory devices. Chalcogenide glasses have emerged as promising candidates for high-density, three-dimensional stackable cross-point array structures. In this study, we delve into the intricate electrical switching behaviour of Se86−xTe14Inx (x = 0, 2, 4, 6) chalcogenide glasses in the form of thin films, employing Aluminium (Al) as the top and bottom electrodes. Exhibiting the remarkable phase-changing characteristics of the material, the films showed memory-type switching behaviour. Remarkably, with an incremental change in Indium concentration from 0 to 6%, a linear reduction in the threshold voltage (Vth) from 12.75 to 4.80 V was observed, underscoring the tunability of switching properties with respect to compositional variations. When the Al top electrode was substituted with Silver (Ag) the thin films’ electrical behaviour changed and this alteration instigated a shift in the switching mechanism. The films changed their characteristics from memory to threshold-switching behaviour, presenting a unique phenomenon in the realm of Se-Te-based chalcogenide glassy alloys. The presence of an active electrode (Ag) at the top facilitated the formation of temporary Ag filaments, making the device a programmable metallization cell (PMC) with remarkable threshold-switching capabilities with higher selectivity (∼ 5 × 103) and endurance of 104 cycles. The observed tunable attributes, contingent on the precise adjustment of Indium concentration and film thickness, underscore the immense potential of these films as highly efficient and adaptable unidirectional selectors and memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data sets obtained during experiments of the current study are available from the corresponding author upon reasonable request. The graphical representations of the data are already given in the manuscript.

References

  1. A. Redaelli, A. Pirovano, F. Pellizzer et al., Electronic switching effect and phase-change transition in chalcogenide materials. IEEE Electron. Device Lett. 25, 684–686 (2004). https://doi.org/10.1109/LED.2004.836032

    Article  CAS  Google Scholar 

  2. J.T. Devaraju, B.H. Sharmila, S. Asokan, K.V. Acharya, Threshold electrical switching in As45Te55-xInx and As50Te50-xInx glasses. Appl. Phys. A Mater. Sci. Process. 75, 515–518 (2002). https://doi.org/10.1007/s003390101013

    Article  CAS  Google Scholar 

  3. T. Zhu, Y. Zhang, X. Wei et al., The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys. 18, 33601 (2023). https://doi.org/10.1007/s11467-022-1231-9

    Article  Google Scholar 

  4. S. Prakash, S. Asokan, D.B. Ghare, Easily reversible memory switching in Ge - As - Te glasses. J. Phys. D: Appl. Phys. 29, 2004–2008 (1996). https://doi.org/10.1088/0022-3727/29/7/037

    Article  CAS  Google Scholar 

  5. J. Song, J. Woo, A. Prakash et al., Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron. Device Lett. 36, 681–683 (2015). https://doi.org/10.1109/LED.2015.2430332

    Article  CAS  Google Scholar 

  6. G. Pfister, Electronic properties of chalcogenide glasses and their use in xerography. J. Electron. Mater. 8, 789–837 (1979). https://doi.org/10.1007/BF02651186

    Article  CAS  Google Scholar 

  7. H.J. Stocker, C.A. Barlow, D.F. Weirauch, Mechanism of threshold switching in semiconducting glasses. J. Non-cryst. Solids. 4, 523–535 (1970). https://doi.org/10.1016/0022-3093(70)90088-8

    Article  CAS  Google Scholar 

  8. R.M. Mehra, R. Shyam, P.C. Mathur, Off-state thermal switching in amorphous Se–Te–Ge system. J. Non-cryst. Solids 31, 435–439 (1979). https://doi.org/10.1016/0022-3093(79)90156-X

    Article  CAS  Google Scholar 

  9. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). https://doi.org/10.1103/PhysRevLett.21.1450

    Article  Google Scholar 

  10. D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3309 (1980). https://doi.org/10.1063/1.328036

    Article  CAS  Google Scholar 

  11. P. Priyadarshini, S. Das, R. Naik, A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications. RSC Adv. 12, 9599–9620 (2022). https://doi.org/10.1039/D2RA00771A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Saxena, C. Persch, M. Wuttig, A. Manivannan, Exploring ultrafast threshold switching in In3SbTe2 phase change memory devices. Sci. Rep. 9, 19251 (2019). https://doi.org/10.1038/s41598-019-55874-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Sharma, N. Mehta, A. Kumar, Dielectric relaxation in Se80 – xTe20Snx chalcogenide glasses. J. Mater. Sci. 46, 4509–4516 (2011). https://doi.org/10.1007/s10853-011-5344-8

    Article  CAS  Google Scholar 

  14. Z. Sun, J. Zhou, Y. Pan et al.,  Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material. Proc. National Acad. Sci 108, 10410–10414 (2011). https://doi.org/10.1073/pnas.1107464108

    Article  Google Scholar 

  15. M.A. Afifi, M.M. Abdel-Aziz, H.H. Labib et al., Electrical and switching properties of amorphous films based on the Ge–Se–Tl system. Vacuum. 61, 45–53 (2001). https://doi.org/10.1016/S0042-207X(00)00443-7

    Article  CAS  Google Scholar 

  16. J. Sharma, R. Singh, H. Singh et al., Synthesis of SnSe2 thin films by thermally induced phase transition in SnSe. J. Alloys Compd. 724, 62–66 (2017). https://doi.org/10.1016/j.jallcom.2017.06.344

    Article  CAS  Google Scholar 

  17. E. Romanova, S. Korsakova, D. Zhivotkov et al., Evanescent waves in glassy chalcogenide structures for remote spectroscopic sensing of environment. 2019 21st Int. Conf. Transpar. Opt. Netw. (ICTON) (2019). https://doi.org/10.1109/ICTON.2019.8840452

    Article  Google Scholar 

  18. D. Lezal, J. Zavadil, M. Prochazka, Sulfide, selenide and telluride glassy systems for optoelectronic applications. J. Optoelectron. Adv. Mater. 7, 2281–2291 (2005)

    CAS  Google Scholar 

  19. B.J. Fernandes, K. Sridharan, P. Munga et al., Memory type switching behavior of ternary Ge 20 Te 80– x Sn x (0 ⩽ x ⩽ 4) chalcogenide compounds. J. Phys. D: Appl. Phys. 49, 295104 (2016). https://doi.org/10.1088/0022-3727/49/29/295104

    Article  CAS  Google Scholar 

  20. S.B. Bhanu Prashanth, S. Asokan, Composition dependent electrical switching in GexSe35 – xTe65(18 ≤ x ≤ 25) glasses–the influence of network rigidity and thermal properties. Solid State Commun. 147, 452–456 (2008). https://doi.org/10.1016/j.ssc.2008.07.005

    Article  CAS  Google Scholar 

  21. P.K. Surabhi Mishra, Singh, P. Lohia, D.K. Dwivedi, Thin film preparation and optical properties of Se–Te based chalcogenide glasses for optoelectronic applications. Glass Phys. Chem. 46, 341–349 (2020). https://doi.org/10.1134/S1087659620040094

    Article  Google Scholar 

  22. S.R. Bauers, M.B. Tellekamp, D.M. Roberts et al., Metal chalcogenides for neuromorphic computing: emerging materials and mechanisms. Nanotechnology. 32, 372001 (2021). https://doi.org/10.1088/1361-6528/abfa51

    Article  CAS  Google Scholar 

  23. M. Xu, X. Mai, J. Lin et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30, 2003419 (2020). https://doi.org/10.1002/adfm.202003419

    Article  CAS  Google Scholar 

  24. A. Ali, H. Abbas, M. Hussain et al., Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses. Nano Res. 15, 2263–2277 (2022). https://doi.org/10.1007/s12274-021-3793-1

    Article  CAS  Google Scholar 

  25. M.N. Kozicki, M. Balakrishnan, C. Gopalan et al., Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes. Symp. Non-Vol. Memory Technol. (2005). https://doi.org/10.1109/NVMT.2005.1541405

    Article  Google Scholar 

  26. F. Wang, X. Wu,  Non-volatile memory devices based on chalcogenide materials. 2009 Sixth Int. Conf. Inform. Technol.: New Gener. (2009). https://doi.org/10.1109/ITNG.2009.65

    Article  Google Scholar 

  27. A. Hümmelgen I, J. Coville, N. Cruz-Cruz, I. Rodrigues R, Carbon nanostructures in organic WORM memory devices. J. Mater. Chem. C 2, 7708–7714 (2014). https://doi.org/10.1039/C4TC00816B

    Article  Google Scholar 

  28. B. Qu, Q. Lin, T. Wan et al., Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen. J. Phys. D: Appl. Phys. 50, 315105 (2017). https://doi.org/10.1088/1361-6463/aa76d6

    Article  CAS  Google Scholar 

  29. S.M. Islam, V.K. Sangwan, D. Bruce Buchholz et al., Amorphous to crystal phase change memory effect with two-fold bandgap difference in semiconducting K2Bi8Se13. J. Am. Chem. Soc. 143, 6221–6228 (2021). https://doi.org/10.1021/jacs.1c01484

    Article  CAS  PubMed  Google Scholar 

  30. C.-C. Hsu, C.-W. Cheng, W.-C. Jhang, S.-M. Wen, Modification of OFF- and ON-resistances of SrTiOx WORM memories by thermal annealing processes. IEEE Trans. Electron. Devices 69, 1020–1027 (2022). https://doi.org/10.1109/TED.2021.3139855

    Article  CAS  Google Scholar 

  31. H.-C. Hsieh, N. Wu, T.-H. Chuang et al., Eco-friendly polyfluorene/poly(butylene succinate) blends and their electronic device application on biodegradable substrates. ACS Appl. Polym. Mater. 2, 2469–2476 (2020). https://doi.org/10.1021/acsapm.0c00439

    Article  CAS  Google Scholar 

  32. A.M. Shakra, Estimating the Switching phenomenon for Se98Te2 and Se96Te2X2 (X = Zn or Cd) Chalcogenide glasses. J. Non-cryst. Solids. 584, 121514 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121514

    Article  CAS  Google Scholar 

  33. K.C. Kwon, J.H. Baek, K. Hong et al., Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nanomicro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M.B. Balaban, N. Chamele, S.S. Swain et al., Fabrication and characterization of Cu2O/Cu-WO3 bilayers for lateral programmable metallization cells. Appl. Surf. Sci. 527, 146899 (2020). https://doi.org/10.1016/j.apsusc.2020.146899

    Article  CAS  Google Scholar 

  35. Z. Wang, M. Rao, R. Midya et al., Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28, 1704862 (2018). https://doi.org/10.1002/adfm.201704862

    Article  CAS  Google Scholar 

  36. B. Song, H. Xu, S. Liu et al., Threshold switching behavior of Ag-SiTe-Based selector device and annealing effect on its characteristics. IEEE J. Electron. Devices Soc. 6, 674–679 (2018). https://doi.org/10.1109/JEDS.2018.2836400

    Article  CAS  Google Scholar 

  37. S. Kumar, K. Singh, The effect of indium additive on crystallization kinetics and thermal stability of Se–Te–Sn chalcogenide glasses. Phys. B: Condens. Matter. 406, 1519–1524 (2011). https://doi.org/10.1016/j.physb.2011.01.060

    Article  CAS  Google Scholar 

  38. N. Afify, Differential scanning calorimetric study of chalcogenide glass Se0.7Te0.3. J. Non-cryst. Solids. 128, 279–284 (1991). https://doi.org/10.1016/0022-3093(91)90465-I

    Article  CAS  Google Scholar 

  39. B.S. Anjali, Patial, S. Bhardwaj et al., On the crystallization kinetics of multicomponent nano-chalcogenide Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys. Nano Ex. 1, 030021 (2020). https://doi.org/10.1088/2632-959X/abc8c7

    Article  Google Scholar 

  40. M.A. Alvi, Study of phase separation in amorphous Se–Te–Bi material. Superlattices Microstruct. 73, 1–11 (2014). https://doi.org/10.1016/j.spmi.2014.05.004

    Article  CAS  Google Scholar 

  41. A. Kumar, P.B. Barman, R. Sharma, Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses. J. Therm. Anal. Calorim. 114, 1003–1013 (2013). https://doi.org/10.1007/s10973-013-3055-x

    Article  CAS  Google Scholar 

  42. N.A. Hegab, I.S. Yahia, A.M. Shakra et al., Investigation of switching phenomenon of Se75Te25 – xGax amorphous system. J. Alloys Compd. 509, 5935–5941 (2011). https://doi.org/10.1016/j.jallcom.2011.03.016

    Article  CAS  Google Scholar 

  43. S.B. Bhanu Prashanth, S. Asokan, Effect of antimony addition on the thermal and electrical-switching behavior of bulk Se–Te glasses. J. Non-cryst. Solids. 355, 164–168 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.11.003

    Article  CAS  Google Scholar 

  44. S. Joshi, N.K. Udayashankar, Observation of electrical threshold switching behavior and thermal crystallization in bulk Se86-xTe14Snx chalcogenide glasses. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.02.024

    Article  Google Scholar 

  45. M.J. Yu, K.R. Son, A.C. Khot et al., Three musketeers: demonstration of multilevel memory, selector, and synaptic behaviors from an Ag-GeTe based chalcogenide material. J. Mater. Res. Technol. 15, 1984–1995 (2021). https://doi.org/10.1016/j.jmrt.2021.09.044

    Article  CAS  Google Scholar 

  46. J. Kim, J. Lee, M. Kang, H. Sohn, Threshold switching of Ag-Ga2Te3 selector with high endurance for applications to cross-point arrays. Nanoscale Res. Lett. 16, 128 (2021). https://doi.org/10.1186/s11671-021-03585-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J. Woo, H. Hwang, Communication—impact of filament instability in an ag 2 S-based conductive-bridge RAM for cross-point selector applications. ECS J. Solid State Sci. Technol. 5, Q98–Q100 (2016). https://doi.org/10.1149/2.0221603jss

    Article  CAS  Google Scholar 

  48. S. Joshi, J.D. Rodney, A. James et al., Investigation of Indium doped Se-Te bulk chalcogenide glasses for electrical switching and phase changing applications. J. Alloys Compd. 978, 173427 (2024). https://doi.org/10.1016/j.jallcom.2024.173427

    Article  CAS  Google Scholar 

  49. M. Pandian, P. Matheswaran, B. Gokul et al., Preparation and characterization of indium chalcogenide thin films: a material for phase change memory. Appl. Surf. Sci. 449, 55–67 (2018). https://doi.org/10.1016/j.apsusc.2018.01.027

    Article  CAS  Google Scholar 

  50. A. Tverjanovich, A. Cuisset, D. Fontanari, E. Bychkov, Structure of Se–Te glasses by Raman spectroscopy and DFT modeling. J. Am. Ceram. Soc. 101, 5188–5197 (2018). https://doi.org/10.1111/jace.15758

    Article  CAS  Google Scholar 

  51. M. Kastner, D. Adler, H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504–1507 (1976). https://doi.org/10.1103/PhysRevLett.37.1504

    Article  CAS  Google Scholar 

  52. M. Kastner, Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors. Phys. Rev. Lett. 28, 355–357 (1972). https://doi.org/10.1103/PhysRevLett.28.355

    Article  CAS  Google Scholar 

  53. A. Ali, H. Abbas, M. Hussain et al., Versatile GeS-based CBRAM with compliance-current-controlled threshold and bipolar resistive switching for electronic synapses. Appl. Mater. Today. 29, 101554 (2022). https://doi.org/10.1016/j.apmt.2022.101554

    Article  Google Scholar 

  54. M.R. Latif, P.H. Davis, W.B. Knowton, M. Mitkova, CBRAM devices based on a nanotube chalcogenide glass structure. J. Mater. Sci: Mater. Electron. 30, 2389–2402 (2019). https://doi.org/10.1007/s10854-018-0512-0

    Article  CAS  Google Scholar 

  55. B. Song, R. Cao, H. Xu et al., A HfO2/SiTe based dual-layer selector device with minor threshold voltage variation. Nanomaterials. 9, 408 (2019). https://doi.org/10.3390/nano9030408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. P.A. Dananjaya, D.J.J. Loy, S.C.W. Chow, W.S. Lew, Unidirectional threshold switching induced by Cu migration with high selectivity and ultralow OFF current under gradual electroforming treatment. ACS Appl. Electron. Mater. 1, 2076–2085 (2019). https://doi.org/10.1021/acsaelm.9b00446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Central Research Facility (CRF), NITK, Surathkal for providing facilities for FESEM and GIXRD characterizations respectively. Authors would also like to thank Dr. John D Rodney and Mrs. Anupriya James for their help in characterizations and analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sindhur Joshi: conceptualisation, methodology, visualisation, investigation, writing—original draft. N. K. Udayashankar: conceptualization, writing—review, editing, supervision.

Corresponding authors

Correspondence to Sindhur Joshi or N. K. Udayashankar.

Ethics declarations

Conflict of interest

The corresponding author confirms on behalf of all authors that there have been no involvements that might raise the questions of bias in the work reported or in the conclusions, implications, or opinions stated. The authors declare that they have no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No experiments related to human tissues were carried out in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 476.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Udayashankar, N.K. Tunable electrode-dependent switching characteristics of Se-Te-In chalcogenide thin films. J Mater Sci: Mater Electron 35, 828 (2024). https://doi.org/10.1007/s10854-024-12585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12585-6

Navigation