Skip to main content
Log in

Unraveling the threshold stress of structural rejuvenation of metallic glasses via thermo-mechanical creep

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The competition between physical aging and structural rejuvenation determines the physical and mechanical properties of glassy materials. Thus, the rejuvenation-aging boundary must be identified quantitatively. In this work, we unravel a stress boundary to distinguish rejuvenation from aging via the thermo-mechanical creep of a typical Zr-based metallic glass. The crept glasses were rejuvenated into high-enthalpy disordered states when the applied stress exceeded a threshold that was numerically close to the steady-state flow stress; otherwise, the glasses were aged. A theoretical model for glass creep was adopted to demystify the observed stress threshold of rejuvenation. The model revealed that the thermo-mechanical creep beyond the threshold stress could activate sufficient shear transformations to create a net free volume, thus leading to structural rejuvenation. Furthermore, we derived the analytical expressions for the threshold and flow stresses. Both stresses can act as the rejuvenation-aging boundary, which is well supported by experimental creep data. The present work procures a deeper understanding of the rejuvenation mechanism of glasses and provides useful implications for abstaining from glass aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Debenedetti, and F. H. Stillinger, Nature 410, 259 (2001).

    Article  ADS  Google Scholar 

  2. W. H. Wang, Prog. Mater. Sci. 106, 100561 (2019).

    Article  Google Scholar 

  3. A. L. Greer, Science 267, 1947 (1995).

    Article  ADS  Google Scholar 

  4. T. C. Hufnagel, Nat. Mater. 14, 867 (2015).

    Article  ADS  Google Scholar 

  5. Y. Sun, A. Concustell, and A. L. Greer, Nat. Rev. Mater. 1, 16039 (2016).

    Article  ADS  Google Scholar 

  6. M. C. Ri, D. W. Ding, Y. H. Sun, and W. H. Wang, J. Mater. Sci. Tech. 69, 1 (2021).

    Article  Google Scholar 

  7. M. Jiang, Sci. China-Phys. Mech. Astron. 63, 106131 (2020).

    Article  Google Scholar 

  8. J. Pan, Y. P. Ivanov, W. H. Zhou, Y. Li, and A. L. Greer, Nature 578, 559 (2020).

    Article  ADS  Google Scholar 

  9. K. W. Park, C. M. Lee, M. Wakeda, Y. Shibutani, M. L. Falk, and J. C. Lee, Acta Mater. 56, 5440 (2008).

    Article  ADS  Google Scholar 

  10. Y. Wu, H. Bei, Y. L. Wang, Z. P. Lu, E. P. George, and Y. F. Gao, Int. J. Plast. 71, 136 (2015).

    Article  Google Scholar 

  11. Y. Tong, W. Dmowski, Y. Yokoyama, G. Wang, P. K. Liaw, and T. Egami, Scripta Mater. 69, 570 (2013).

    Article  Google Scholar 

  12. W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang, and Z. Lu, Sci. Bull. 63, 840 (2018).

    Article  Google Scholar 

  13. B. Shang, W. Wang, A. L. Greer, and P. Guan, Acta Mater. 213, 116952 (2021), arXiv: 2012.01105.

    Article  Google Scholar 

  14. H. Zhou, R. Hubek, M. Peterlechner, and G. Wilde, Acta Mater. 179, 308 (2019).

    Article  ADS  Google Scholar 

  15. J. Pan, Y. X. Wang, Q. Guo, D. Zhang, A. L. Greer, and Y. Li, Nat. Commun. 9, 560 (2018).

    Article  ADS  Google Scholar 

  16. A. Das, E. M. Dufresne, and R. Maaß, Acta Mater. 196, 723 (2020).

    Article  ADS  Google Scholar 

  17. L. Zhang, Y. Wu, S. Feng, W. Li, H. Zhang, H. Fu, H. Li, Z. Zhu, and H. Zhang, J. Mater. Sci. Tech. 38, 73 (2020).

    Article  Google Scholar 

  18. M. Q. Jiang, W. H. Wang, and L. H. Dai, Scripta Mater. 60, 1004 (2009).

    Article  Google Scholar 

  19. F. Jiang, M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He, and J. Sun, Acta Mater. 59, 2057 (2011).

    Article  ADS  Google Scholar 

  20. M. Q. Jiang, G. Wilde, and L. H. Dai, Scripta Mater. 127, 54 (2017).

    Article  Google Scholar 

  21. Y. Z. Lu, M. Q. Jiang, X. Lu, Z. X. Qin, Y. J. Huang, and J. Shen, Phys. Rev. Appl. 9, 014023 (2018), arXiv: 1706.06229.

    Article  ADS  Google Scholar 

  22. G. Ding, C. Li, A. Zaccone, W. H. Wang, H. C. Lei, F. Jiang, Z. Ling, and M. Q. Jiang, Sci. Adv. 5, eaaw6249 (2019).

    Article  ADS  Google Scholar 

  23. Y. Tong, W. Dmowski, H. Bei, Y. Yokoyama, and T. Egami, Acta Mater. 148, 384 (2018).

    Article  ADS  Google Scholar 

  24. Y. Tong, T. Iwashita, W. Dmowski, H. Bei, Y. Yokoyama, and T. Egami, Acta Mater. 86, 240 (2015).

    Article  ADS  Google Scholar 

  25. W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren, M. Umemoto, K. Tsuchiya, A. Inoue, and T. Egami, Acta Mater. 58, 429 (2010).

    Article  ADS  Google Scholar 

  26. A. D. Phan, A. Zaccone, V. D. Lam, and K. Wakabayashi, Phys. Rev. Lett. 126, 025502 (2021), arXiv: 2007.15524.

    Article  ADS  Google Scholar 

  27. W. Zhu, J. Liu, S. Mao, and X. Wei, J. Mech. Phys. Solids 146, 104216 (2021).

    Article  Google Scholar 

  28. M. Zhang, Y. M. Wang, F. X. Li, S. Q. Jiang, M. Z. Li, and L. Liu, Sci. Rep. 7, 625 (2017).

    Article  ADS  Google Scholar 

  29. M. Q. Jiang, G. Wilde, and L. H. Dai, Mech. Mater. 81, 72 (2015).

    Article  Google Scholar 

  30. B. G. Yoo, J. Y. Kim, Y. J. Kim, I. C. Choi, S. Shim, T. Y. Tsui, H. Bei, U. Ramamurty, and J. Jang, Int. J. Plast. 37, 108 (2012).

    Article  Google Scholar 

  31. A. Lemaître, Phys. Rev. Lett. 89, 195503 (2002), arXiv: cond-mat/0108442.

    Article  ADS  Google Scholar 

  32. P. Cao, M. P. Short, and S. Yip, Proc. Natl. Acad. Sci. 114, 13631 (2017).

    Article  ADS  Google Scholar 

  33. L. T. Zhang, Y. J. Duan, D. Crespo, E. Pineda, Y. J. Wang, J. M. Pelletier, and J. C. Qiao, Sci. China-Phys. Mech. Astron. 64, 296111 (2021).

    Article  ADS  Google Scholar 

  34. J. Jang, B. G. Yoo, Y. J. Kim, J. H. Oh, I. C. Choi, and H. Bei, Scripta Mater. 64, 753 (2011).

    Article  Google Scholar 

  35. H. Huang, M. Jiang, and J. Yan, J. Alloys Compd. 754, 215 (2018).

    Article  Google Scholar 

  36. F. Meng, K. Tsuchiya, K. Seiichiro II, and Y. Yokoyama, Appl. Phys. Lett. 101, 121914 (2012).

    Article  ADS  Google Scholar 

  37. A. L. Greer, Y. Q. Cheng, and E. Ma, Mater. Sci. Eng.-R-Rep. 74, 71 (2013).

    Article  Google Scholar 

  38. W. Jiang, G. Fan, F. Liu, G. Wang, H. Choo, and P. Liaw, Int. J. Plast. 24, 1 (2008).

    Article  Google Scholar 

  39. M. Q. Jiang, and L. H. Dai, J. Mech. Phys. Solids 57, 1267 (2009).

    Article  ADS  Google Scholar 

  40. Y. Chen, M. Q. Jiang, and L. H. Dai, Int. J. Plast. 50, 18 (2013).

    Article  Google Scholar 

  41. M. Q. Jiang, G. Wilde, J. H. Chen, C. B. Qu, S. Y. Fu, F. Jiang, and L. H. Dai, Acta Mater. 77, 248 (2014).

    Article  ADS  Google Scholar 

  42. F. Van Loock, L. Brassart, and T. Pardoen, Int. J. Plast. 145, 103079 (2021).

    Article  Google Scholar 

  43. R. T. Qu, S. J. Wu, S. G. Wang, X. D. Wang, and Z. F. Zhang, J. Mech. Phys. Solids 138, 103922 (2020).

    Article  MathSciNet  Google Scholar 

  44. R. T. Qu, Z. Q. Liu, G. Wang, and Z. F. Zhang, Acta Mater. 91, 19 (2015).

    Article  ADS  Google Scholar 

  45. R. T. Qu, S. G. Wang, X. D. Wang, Z. Q. Liu, and Z. F. Zhang, Scripta Mater. 133, 24 (2017).

    Article  Google Scholar 

  46. F. Spaepen, Acta Metall. 25, 407 (1977).

    Article  Google Scholar 

  47. J. Ding, L. Li, N. Wang, L. Tian, M. Asta, R. O. Ritchie, and T. Egami, Mater. Today Phys. 17, 100359 (2021).

    Article  Google Scholar 

  48. M. Heggen, F. Spaepen, and M. Feuerbacher, J. Appl. Phys. 97, 033506 (2005).

    Article  ADS  Google Scholar 

  49. D. Şopu, X. Yuan, F. Moitzi, F. Spieckermann, X. Bian, and J. Eckert, Appl. Mater. Today 22, 100958 (2021).

    Article  Google Scholar 

  50. Z. Lv, C. Yuan, H. Ke, and B. Shen, J. Mater. Sci. Tech. 69, 42 (2021).

    Article  Google Scholar 

  51. D. J. Lacks, and M. J. Osborne, Phys. Rev. Lett. 93, 255501 (2004).

    Article  ADS  Google Scholar 

  52. D. Fiocco, G. Foffi, and S. Sastry, Phys. Rev. E 88, 020301 (2013), arXiv: 1302.6518.

    Article  ADS  Google Scholar 

  53. P. Wang, and X. Yang, Comput. Mater. Sci. 185, 109965 (2020).

    Article  Google Scholar 

  54. J. S. Harmon, M. D. Demetriou, W. L. Johnson, and K. Samwer, Phys. Rev. Lett. 99, 135502 (2007).

    Article  ADS  Google Scholar 

  55. W. L. Johnson, and K. Samwer, Phys. Rev. Lett. 95, 195501 (2005).

    Article  ADS  Google Scholar 

  56. Y. Huang, J. C. Khong, T. Connolley, and J. Mi, Int. J. Plast. 60, 87 (2014).

    Article  Google Scholar 

  57. Y. Jin, P. Urbani, F. Zamponi, and H. Yoshino, Sci. Adv. 4, eaat6387 (2018), arXiv: 1803.04597.

    Article  ADS  Google Scholar 

  58. G. Biroli, and P. Urbani, Nat. Phys. 12, 1130 (2016), arXiv: 1601.06724.

    Article  Google Scholar 

  59. P. Cao, M. P. Short, and S. Yip, Proc. Natl. Acad. Sci. 116, 18790 (2019).

    Article  ADS  Google Scholar 

  60. C. Wang, Z. Z. Yang, T. Ma, Y. T. Sun, Y. Y. Yin, Y. Gong, L. Gu, P. Wen, P. W. Zhu, Y. W. Long, X. H. Yu, C. Q. Jin, W. H. Wang, and H. Y. Bai, Appl. Phys. Lett. 110, 111901 (2017).

    Article  ADS  Google Scholar 

  61. X. C. Tang, T. Nguyen, X. H. Yao, and J. W. Wilkerson, J. Mech. Phys. Solids 141, 104023 (2020).

    Article  MathSciNet  Google Scholar 

  62. J. Lu, G. Ravichandran, and W. L. Johnson, Acta Mater. 51, 3429 (2003).

    Article  ADS  Google Scholar 

  63. J. S. Harmon, M. D. Demetriou, W. L. Johnson, and M. Tao, Appl. Phys. Lett. 90, 131912 (2007).

    Article  ADS  Google Scholar 

  64. P. de Hey, J. Sietsma, and A. van den Beukel, Acta Mater. 46, 5873 (1998).

    Article  ADS  Google Scholar 

  65. J. F. Li, J. Q. Wang, X. F. Liu, K. Zhao, B. Zhang, H. Y. Bai, M. X. Pan, and W. H. Wang, Sci. China-Phys. Mech. Astron. 53, 409 (2010).

    Article  ADS  Google Scholar 

  66. V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, Int. J. Plast. 26, 1138 (2010).

    Article  Google Scholar 

  67. M. Wakeda, J. Saida, J. Li, and S. Ogata, Sci. Rep. 5, 10545 (2015).

    Article  ADS  Google Scholar 

  68. H. B. Ke, P. Wen, H. L. Peng, W. H. Wang, and A. L. Greer, Scripta Mater. 64, 966 (2011).

    Article  Google Scholar 

  69. S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter, and A. L. Greer, Nature 524, 200 (2015).

    Article  ADS  Google Scholar 

  70. K. Sun, G. Wang, Y. W. Wang, H. C. Chen, L. Yan, S. Pauly, Y. H. Wu, H. Weber, Q. Wang, B. Huang, Y. D. Jia, J. Yi, and Q. J. Zhai, Scripta Mater. 180, 34 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MinQiang Jiang.

Additional information

This work was supported by the National Outstanding Youth Science Fund Project (Grant No. 12125206), the National Natural Science Foundation of China (Grant Nos. 11972345, and 11790292), and the NSFC Basic Science Center for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, G., Jiang, F., Song, X. et al. Unraveling the threshold stress of structural rejuvenation of metallic glasses via thermo-mechanical creep. Sci. China Phys. Mech. Astron. 65, 264613 (2022). https://doi.org/10.1007/s11433-021-1878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1878-4

Navigation