Skip to main content
Log in

Correlation between boson peak and thermal expansion manifested by physical aging and high pressure

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate the effects of high pressure and physical aging on the boson peak and thermal expansion of a typical metallic glass. Specifically, the thermal expansion coefficient and boson peak intensity monotonically decrease during physical aging. With the increase of high pressure, the boson peak intensity and the thermal expansion coefficient coincidently experience an incipient decrease and then a subsequent increase. The boson peak intensity shows an approximately linear relationship with the thermal expansion coefficient. The thermal expansion can be affected by structural relaxation or rejuvenation, which can reflect the flow units variation and atomic packing of a metallic glass. Our results indicate a direct link between structural relaxation or rejuvenation and fast boson peak dynamics, providing insights into the boson peak behavior and structural heterogeneity of metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Phillips, Amorphous Solids: Low-Temperature Properties (Springer, Berlin, 1981).

    Book  Google Scholar 

  2. T. S. Grigera, V. Martén-Mayor, G. Parisi, and P. Verrocchio, Nature 422, 289 (2003).

    Article  ADS  Google Scholar 

  3. N. Tomoshige, S. Goto, H. Mizuno, T. Mori, K. Kim, and N. Matubayasi, J. Phys.-Condens. Matter 33, 274002 (2021).

    Article  Google Scholar 

  4. A. Giuntoli, and D. Leporini, Phys. Rev. Lett. 121, 185502 (2018).

    Article  ADS  Google Scholar 

  5. L. Zhang, J. Zheng, Y. Wang, L. Zhang, Z. Jin, L. Hong, Y. Wang, and J. Zhang, Nat. Commun. 8, 67 (2017).

    Article  ADS  Google Scholar 

  6. S. Gelin, H. Tanaka, and A. Lemaître, Nat. Mater. 15, 1177 (2016).

    Article  ADS  Google Scholar 

  7. V. Lubchenko, and P. G. Wolynes, Proc. Natl. Acad. Sci. USA 100, 1515 (2003).

    Article  ADS  Google Scholar 

  8. U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M. A. Ramos, and H. R. Schober, Phys. Rev. B 46, 2798 (1992).

    Article  ADS  Google Scholar 

  9. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 67, 094203 (2003).

    Article  ADS  Google Scholar 

  10. V. A. Khonik, Chin. Phys. B 26, 016401 (2017).

    Article  ADS  Google Scholar 

  11. S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Phys. Rev. Lett. 86, 1255 (2001).

    Article  ADS  Google Scholar 

  12. A. Chumakov, G. Monaco, A. Fontana, A. Bosak, R. Hermann, D. Bessas, B. Wehinger, W. Crichton, M. Krisch, R. Rüffer, G. Baldi, G. CariniJr., G. Carini, G. D’Angelo, E. Gilioli, G. Tripodo, M. Zanatta, B. Winkler, V. Milman, K. Refson, M. Dove, N. Dubrovinskaia, L. Dubrovinsky, R. Keding, and Y. Yue, Phys. Rev. Lett. 112, 025502 (2014).

    Article  ADS  Google Scholar 

  13. J. Yang, Y. J. Wang, E. Ma, A. Zaccone, L. H. Dai, and M. Q. Jiang, Phys. Rev. Lett. 122, 015501 (2019).

    Article  ADS  Google Scholar 

  14. A. Meyer, Phys. Rev. B 66, 134205 (2002).

    Article  ADS  Google Scholar 

  15. D. B. Miracle, Acta Mater. 61, 3157 (2013).

    Article  ADS  Google Scholar 

  16. Z. Wang, and W. H. Wang, Natl. Sci. Rev. 6, 304 (2019).

    Article  Google Scholar 

  17. K. Zhao, Z. Bai, L. Zhang, and G. Liu, Sci. China-Phys. Mech. Astron. 60, 106121 (2017).

    Article  ADS  Google Scholar 

  18. J. Bünz, T. Brink, K. Tsuchiya, F. Meng, G. Wilde, and K. Albe, Phys. Rev. Lett. 112, 135501 (2014).

    Article  ADS  Google Scholar 

  19. Y. P. Mitrofanov, M. Peterlechner, S. V. Divinski, and G. Wilde, Phys. Rev. Lett. 112, 135901 (2014).

    Article  ADS  Google Scholar 

  20. B. Huang, Z. G. Zhu, T. P. Ge, H. Y. Bai, B. A. Sun, Y. Yang, C. T. Liu, and W. H. Wang, Acta Mater. 110, 73 (2016).

    Article  ADS  Google Scholar 

  21. H. Shintani, and H. Tanaka, Nat. Mater. 7, 870 (2008).

    Article  ADS  Google Scholar 

  22. M. B. Tang, H. Y. Bai, and W. H. Wang, Phys. Rev. B 72, 012202 (2005).

    Article  ADS  Google Scholar 

  23. Y. Li, H. Y. Bai, W. H. Wang, and K. Samwer, Phys. Rev. B 74, 052201 (2006).

    Article  ADS  Google Scholar 

  24. R. J. Xue, L. Z. Zhao, M. X. Pan, B. Zhang, and W. H. Wang, J. Non-Crystal. Solids 425, 153 (2015).

    Article  ADS  Google Scholar 

  25. P. Luo, Y. Z. Li, H. Y. Bai, P. Wen, and W. H. Wang, Phys. Rev. Lett. 116, 175901 (2016).

    Article  ADS  Google Scholar 

  26. G. Ding, C. Li, A. Zaccone, W. H. Wang, H. C. Lei, F. Jiang, Z. Ling, and M. Q. Jiang, Sci. Adv. 5, eaaw6249 (2019).

    Article  ADS  Google Scholar 

  27. S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter, and A. L. Greer, Nature 524, 200 (2015).

    Article  ADS  Google Scholar 

  28. C. Wang, Z. Z. Yang, T. Ma, Y. T. Sun, Y. Y. Yin, Y. Gong, L. Gu, P. Wen, P. W. Zhu, Y. W. Long, X. H. Yu, C. Q. Jin, W. H. Wang, and H. Y. Bai, Appl. Phys. Lett. 110, 111901 (2017).

    Article  ADS  Google Scholar 

  29. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saubders College Publishing, New York, 1976).

    MATH  Google Scholar 

  30. R. Yamada, Y. Shibazaki, Y. Abe, W. Ryu, and J. Saida, Sci. Rep. 10, 7438 (2020).

    Article  ADS  Google Scholar 

  31. J. Guo, S. Joo, D. Pi, W. Kim, Y. Song, H. S. Kim, X. Zhang, and D. Kong, Adv. Eng. Mater. 21, 1800918 (2018).

    Article  Google Scholar 

  32. N. Mattern, J. Bednarcik, M. Stoica, and J. Eckert, Intermetallics 32, 51 (2013).

    Article  Google Scholar 

  33. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 71, 014209 (2005).

    Article  ADS  Google Scholar 

  34. K. Niss, B. Begen, B. Frick, J. Ollivier, A. Beraud, A. Sokolov, V. N. Novikov, and C. Alba-Simionesco, Phys. Rev. Lett. 99, 055502 (2007).

    Article  ADS  Google Scholar 

  35. L. Hong, B. Begen, A. Kisliuk, S. Pawlus, M. Paluch, and A. P. Sokolov, Phys. Rev. Lett. 102, 145502 (2009).

    Article  ADS  Google Scholar 

  36. R. J. Xue, L. Z. Zhao, C. L. Shi, T. Ma, X. K. Xi, M. Gao, P. W. Zhu, P. Wen, X. H. Yu, C. Q. Jin, M. X. Pan, W. H. Wang, and H. Y. Bai, Appl. Phys. Lett. 109, 221904 (2016).

    Article  ADS  Google Scholar 

  37. J. C. Bendert, M. E. Blodgett, A. K. Gangopadhyay, and K. F. Kelton, Appl. Phys. Lett. 102, 211913 (2013).

    Article  ADS  Google Scholar 

  38. H. Kato, H. S. Chen, and A. Inoue, Script. Mater. 58, 1106 (2008).

    Article  Google Scholar 

  39. N. Mattern, M. Stoica, G. Vaughan, and J. Eckert, Acta Mater. 60, 517 (2012).

    Article  ADS  Google Scholar 

  40. J. Steinberg, S. Tyagi, and A. E. LordJr., J. Non-Crystal. Solids 41, 279 (1980).

    Article  ADS  Google Scholar 

  41. J. C. Mauro, S. S. Uzun, W. Bras, and S. Sen, Phys. Rev. Lett. 102, 155506 (2009).

    Article  ADS  Google Scholar 

  42. R. Richert, Phys. Rev. Lett. 104, 085702 (2010).

    Article  ADS  Google Scholar 

  43. W. X. Jiang, and B. Zhang, Sci. China-Phys. Mech. Astron. 57, 1870 (2014).

    Article  ADS  Google Scholar 

  44. V. M. Giordano, and B. Ruta, Nat. Commun. 7, 10344 (2016).

    Article  ADS  Google Scholar 

  45. J. Ding, M. Asta, and R. O. Ritchie, Phys. Rev. B 93, 140204 (2016).

    Article  ADS  Google Scholar 

  46. N. Miyazaki, M. Wakeda, Y. J. Wang, and S. Ogata, npj Comput. Mater. 2, 16013 (2016).

    Article  ADS  Google Scholar 

  47. M. T. Sandor, H. B. Ke, W. H. Wang, and Y. Wu, J. Phys.-Condens. Matter 25, 165701 (2013).

    Article  ADS  Google Scholar 

  48. C. C. Yuan, J. F. Xiang, X. K. Xi, and W. H. Wang, Phys. Rev. Lett. 107, 236403 (2011).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51801083, 11790291, 51461165101, 51801124, and 51671211), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20181044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongjie Xue, Mingxiang Pan or Haiyang Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, R., Zhao, L., Cai, Y. et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure. Sci. China Phys. Mech. Astron. 65, 246111 (2022). https://doi.org/10.1007/s11433-021-1815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1815-8

Navigation