Skip to main content
Log in

Nonadiabatic holonomic quantum computation and its optimal control

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The geometric phase has the intrinsic property of being resistant to some types of local noises as it only depends on global properties of the evolution path. Meanwhile, the non-Abelian geometric phase is in the matrix form, and thus can naturally be used to implement high performance quantum gates, i.e., the so-called holonomic quantum computation. This article reviews recent advances in nonadiabatic holonomic quantum computation, and focuses on various optimal control approaches that can improve the gate performance, in terms of gate fidelity and robustness. Besides, we also pay special attention to its possible physical realizations and some concrete examples of experimental realizations. Finally, with all these efforts, within state-of-the-art technology, the performance of the implemented holonomic quantum gates can outperform the conventional dynamical ones, under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134

  2. Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 1997, 79: 325–328

    Article  Google Scholar 

  3. Berry M V. Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A, 1984, 392: 45–57

    Article  MathSciNet  MATH  Google Scholar 

  4. Wilczek F, Zee A. Appearance of gauge structure in simple dynamical systems. Phys Rev Lett, 1984, 52: 2111–2114

    Article  MathSciNet  Google Scholar 

  5. Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution. Phys Rev Lett, 1987, 58: 1593–1596

    Article  MathSciNet  Google Scholar 

  6. Anandan J. Non-adiabatic non-Abelian geometric phase. Phys Lett A, 1988, 133: 171–175

    Article  MathSciNet  Google Scholar 

  7. Zanardi P, Rasetti M. Holonomic quantum computation. Phys Lett A, 1999, 264: 94–99

    Article  MathSciNet  MATH  Google Scholar 

  8. Pachos J, Zanardi P, Rasetti M. Non-Abelian Berry connections for quantum computation. Phys Rev A, 1999, 61: 010305

    Article  MathSciNet  Google Scholar 

  9. Zhao P, Xu G, Tong D. Advances in nonadiabatic holonomic quantum computation. Chin Sci Bull, 2021, 66: 1935–1945

    Article  Google Scholar 

  10. Zhang J, Kyaw T H, Filipp S, et al. Geometric and holonomic quantum computation. 2021. ArXiv:2110.03602

  11. Duan L M, Cirac J I, Zoller P. Geometric manipulation of trapped ions for quantum computation. Science, 2001, 292: 1695–1697

    Article  Google Scholar 

  12. Recati A, Calarco T, Zanardi P, et al. Holonomic quantum computation with neutral atoms. Phys Rev A, 2002, 66: 032309

    Article  Google Scholar 

  13. Siewert J, Faoro L, Fazio R. Holonomic quantum computation with Josephson networks. Phys Stat Sol, 2002, 233: 490–496

    Article  Google Scholar 

  14. Faoro L, Siewert J, Fazio R. Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. Phys Rev Lett, 2003, 90: 028301

    Article  Google Scholar 

  15. Solinas P, Zanardi P, Zanghí N, et al. Holonomic quantum gates: a semiconductor-based implementation. Phys Rev A, 2003, 67: 062315

    Article  Google Scholar 

  16. Tong D M. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys Rev Lett, 2010, 104: 120401

    Article  Google Scholar 

  17. Toyoda K, Uchida K, Noguchi A, et al. Realization of holonomic single-qubit operations. Phys Rev A, 2013, 87: 052307

    Article  Google Scholar 

  18. Leroux F, Pandey K, Rehbi R, et al. Non-Abelian adiabatic geometric transformations in a cold strontium gas. Nat Commun, 2018, 9: 3580

    Article  Google Scholar 

  19. Sjöqvist E, Tong D M, Andersson L M, et al. Non-adiabatic holonomic quantum computation. New J Phys, 2012, 14: 103035

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu G F, Zhang J, Tong D M, et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys Rev Lett, 2012, 109: 170501

    Article  Google Scholar 

  21. Johansson M, Sjöqvist E, Andersson L M, et al. Robustness of nonadiabatic holonomic gates. Phys Rev A, 2012, 86: 062322

    Article  Google Scholar 

  22. Spiegelberg J, Sjöqvist E. Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation. Phys Rev A, 2013, 88: 054301

    Article  Google Scholar 

  23. Xu G, Long G. Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci Rep, 2014, 4: 6814

    Article  Google Scholar 

  24. Mousolou V A, Sjöqvist E. Non-Abelian geometric phases in a system of coupled quantum bits. Phys Rev A, 2014, 89: 022117

    Article  Google Scholar 

  25. Zhang J, Kwek L C, Sjöqvist E, et al. Quantum computation in noiseless subsystems with fast non-Abelian holonomies. Phys Rev A, 2014, 89: 042302

    Article  Google Scholar 

  26. Xu G, Long G. Protecting geometric gates by dynamical decoupling. Phys Rev A, 2014, 90: 022323

    Article  Google Scholar 

  27. Liang Z T, Du Y X, Huang W, et al. Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys Rev A, 2014, 89: 062312

    Article  Google Scholar 

  28. Gürkan Z N, Sjöqvist E. Realization of a holonomic quantum computer in a chain of three-level systems. Phys Lett A, 2015, 379: 3050–3053

    Article  MathSciNet  MATH  Google Scholar 

  29. Xue Z Y, Zhou J, Wang Z D. Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys Rev A, 2015, 92: 022320

    Article  Google Scholar 

  30. Zhou J, Yu W C, Gao Y M, et al. Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers. Opt Express, 2015, 23: 14027–14035

    Article  Google Scholar 

  31. Pyshkin P V, Luo D W, Jing J, et al. Expedited holonomic quantum computation via net zero-energy-cost control in decoherence-free subspace. Sci Rep, 2016, 6: 37781

    Article  Google Scholar 

  32. Abdumalikov Jr A A, Fink J M, Juliusson K, et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature, 2013, 496: 482–485

    Article  Google Scholar 

  33. Feng G, Xu G, Long G. Experimental realization of nonadiabatic holonomic quantum computation. Phys Rev Lett, 2013, 110: 190501

    Article  Google Scholar 

  34. Zu C, Wang W B, He L, et al. Experimental realization of universal geometric quantum gates with solid-state spins. Nature, 2014, 514: 72–75

    Article  Google Scholar 

  35. Arroyo-Camejo S, Lazariev A, Hell S W, et al. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat Commun, 2014, 5: 4870

    Article  Google Scholar 

  36. Danilin S, Vepsäläinen A, Paraoanu G S. Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit. Phys Scr, 2018, 93: 055101

    Article  Google Scholar 

  37. Xu G F, Liu C L, Zhao P Z, et al. Nonadiabatic holonomic gates realized by a single-shot implementation. Phys Rev A, 2015, 92: 052302

    Article  Google Scholar 

  38. Sjöqvist E. Nonadiabatic holonomic single-qubit gates in off-resonant A systems. Phys Lett A, 2016, 380: 65–67

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao P Z, Xu G F, Ding Q M, et al. Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces. Phys Rev A, 2017, 95: 062310

    Article  Google Scholar 

  40. Herterich E, Sjöqvist E. Single-loop multiple-pulse nonadiabatic holonomic quantum gates. Phys Rev A, 2016, 94: 052310

    Article  Google Scholar 

  41. Hong Z P, Liu B J, Cai J Q, et al. Implementing universal nonadiabatic holonomic quantum gates with transmons. Phys Rev A, 2018, 97: 022332

    Article  Google Scholar 

  42. Xing T H, Wu X, Xu G F. Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation. Phys Rev A, 2020, 101: 012306

    Article  Google Scholar 

  43. Li H, Liu Y, Long G L. Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins. Sci China-Phys Mech Astron, 2017, 60: 080311

    Article  Google Scholar 

  44. Zhou B B, Jerger P C, Shkolnikov V O, et al. Holonomic quantum control by coherent optical excitation in diamond. Phys Rev Lett, 2017, 119: 140503

    Article  Google Scholar 

  45. Sekiguchi Y, Niikura N, Kuroiwa R, et al. Optical holonomic single quantum gates with a geometric spin under a zero field. Nat Photon, 2017, 11: 309–314

    Article  Google Scholar 

  46. Xu Y, Cai W, Ma Y, et al. Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit. Phys Rev Lett, 2018, 121: 110501

    Article  Google Scholar 

  47. Ishida N, Nakamura T, Tanaka T, et al. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light. Opt Lett, 2018, 43: 2380–2383

    Article  Google Scholar 

  48. Wu J L, Tang S, Wang Y, et al. Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations. Sci China-Phys Mech Astron, 2022, 65: 220311

    Article  Google Scholar 

  49. Carlini A, Koike T. Time-optimal transfer of coherence. Phys Rev A, 2012, 86: 054302

    Article  Google Scholar 

  50. Carlini A, Koike T. Time-optimal unitary operations in Ising chains: unequal couplings and fixed fidelity. J Phys A-Math Theor, 2013, 46: 045307

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang X, Allegra M, Jacobs K, et al. Quantum brachistochrone curves as geodesics: obtaining accurate minimum-time protocols for the control of quantum systems. Phys Rev Lett, 2015, 114: 170501

    Article  Google Scholar 

  52. Geng J, Wu Y, Wang X, et al. Experimental time-optimal universal control of spin qubits in solids. Phys Rev Lett, 2016, 117: 170501

    Article  Google Scholar 

  53. Chen T, Shen P, Xue Z Y. Robust and fast holonomic quantum gates with encoding on superconducting circuits. Phys Rev Appl, 2020, 14: 034038

    Article  Google Scholar 

  54. Liu B J, Xue Z Y, Yung M H. Brachistochrone non-adiabatic holonomic quantum control. 2020. ArXiv:2001.05182

  55. Shen P, Chen T, Xue Z Y. Ultrafast holonomic quantum gates. Phys Rev Appl, 2021, 16: 044004

    Article  Google Scholar 

  56. Sun L N, Yan L L, Su S L, et al. One-step implementation of time-optimal-control three-qubit nonadiabatic holonomic controlled gates in Rydberg atoms. Phys Rev Appl, 2021, 16: 064040

    Article  Google Scholar 

  57. Xu G F, Tong D M, Sjöqvist E. Path-shortening realizations of nonadiabatic holonomic gates. Phys Rev A, 2018, 98: 052315

    Article  Google Scholar 

  58. Zhao P Z, Li K Z, Xu G F, et al. General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation. Phys Rev A, 2020, 101: 062306

    Article  MathSciNet  Google Scholar 

  59. Liang Y, Shen P, Chen T, et al. Composite short-path nonadiabatic holonomic quantum gates. Phys Rev Appl, 2022, 17: 034015

    Article  Google Scholar 

  60. Tang G, Yang X Y, Yan Y, et al. Fast evolution of single qubit gate in non-adiabatic geometric quantum computing. Phys Lett A, 2022, 449: 128349

    Article  MathSciNet  MATH  Google Scholar 

  61. Guery-Odelin D, Ruschhaupt A, Kiely A, et al. Shortcuts to adiabaticity: concepts, methods, and applications. Rev Mod Phys, 2019, 91: 045001

    Article  MathSciNet  Google Scholar 

  62. Zhang J, Kyaw T H, Tong D M, et al. Fast non-Abelian geometric gates via transitionless quantum driving. Sci Rep, 2015, 5: 18414

    Article  Google Scholar 

  63. Huang B H, Kang Y H, Shi Z C, et al. Shortcut scheme for one-step implementation of a three-qubit nonadiabatic holonomic gate. Annalen Der Physik, 2018, 530: 1800179

    Article  Google Scholar 

  64. Kang Y H, Chen Y H, Shi Z C, et al. Nonadiabatic holonomic quantum computation using Rydberg blockade. Phys Rev A, 2018, 97: 042336

    Article  Google Scholar 

  65. Kang Y H, Shi Z C, Huang B H, et al. Flexible scheme for the implementation of nonadiabatic geometric quantum computation. Phys Rev A, 2020, 101: 032322

    Article  MathSciNet  Google Scholar 

  66. Liu B J, Yung M H. Leakage suppression for holonomic quantum gates. Phys Rev Appl, 2020, 14: 034003

    Article  Google Scholar 

  67. Yan T, Liu B J, Xu K, et al. Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys Rev Lett, 2019, 122: 080501

    Article  Google Scholar 

  68. Li Y, Xin T, Qiu C, et al. Dynamical-invariant-based holonomic quantum gates: theory and experiment. Fundamental Res, 2023, 3: 229–236

    Article  Google Scholar 

  69. Xue Z Y, Zhou J, Chu Y M, et al. Nonadiabatic holonomic quantum computation with all-resonant control. Phys Rev A, 2016, 94: 022331

    Article  Google Scholar 

  70. Hu S, Cui W X, Guo Q, et al. Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces. Quantum Inf Process, 2016, 15: 3651–3661

    Article  MathSciNet  MATH  Google Scholar 

  71. Sun C, Wang G, Wu C, et al. Non-adiabatic holonomic quantum computation in linear system-bath coupling. Sci Rep, 2016, 6: 20292

    Article  Google Scholar 

  72. Zhao P Z, Xu G F, Tong D M. Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases. Phys Rev A, 2016, 94: 062327

    Article  Google Scholar 

  73. Song X K, Zhang H, Ai Q, et al. Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J Phys, 2016, 18: 023001

    Article  MATH  Google Scholar 

  74. Lin J N, Liang Y, Yang H D, et al. Holonomic quantum computation by time dependent decoherence free subspaces. Int J Theor Phys, 2017, 56: 1298–1307

    Article  MATH  Google Scholar 

  75. Liu J, Dong P, Zhou J, et al. Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity. Laser Phys Lett, 2017, 14: 055202

    Article  Google Scholar 

  76. Wang C, Guo Z. Single-loop realization of universal nonadiabatic holonomic gates in decoherence-free subspaces. EPL, 2018, 124: 40003

    Article  Google Scholar 

  77. Ji L N, Chen T, Xue Z Y. Scalable nonadiabatic holonomic quantum computation on a superconducting qubit lattice. Phys Rev A, 2019, 100: 062312

    Article  Google Scholar 

  78. Zhao P Z, Wu X, Tong D M. Dynamical-decoupling-protected nonadiabatic holonomic quantum computation. Phys Rev A, 2021, 103: 012205

    Article  MathSciNet  Google Scholar 

  79. Liu B J, Song X K, Xue Z Y, et al. Plug-and-play approach to nonadiabatic geometric quantum gates. Phys Rev Lett, 2019, 123: 100501

    Article  Google Scholar 

  80. Kang Y, Chen Y, Shi Z, et al. One-step implementation of N-qubit nonadiabatic holonomic quantum gates with superconducting qubits via inverse Hamiltonian engineering. Annalen Der Physik, 2019, 531: 1800427

    Article  MathSciNet  Google Scholar 

  81. Kang Y H, Shi Z C, Song J, et al. Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade. Phys Rev A, 2020, 102: 022617

    Article  Google Scholar 

  82. Li S, Chen T, Xue Z. Fast holonomic quantum computation on superconducting circuits with optimal control. Adv Quantum Tech, 2020, 3: 2000001

    Article  Google Scholar 

  83. Guo C Y, Yan L L, Zhang S, et al. Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms. Phys Rev A, 2020, 102: 042607

    Article  Google Scholar 

  84. Wu J L, Wang Y, Han J X, et al. Systematic-error-tolerant multiqubit holonomic entangling gates. Phys Rev Appl, 2021, 16: 064031

    Article  Google Scholar 

  85. Li M, Guo F Q, Jin Z, et al. Multiple-qubit controlled unitary quantum gate for Rydberg atoms using shortcut to adiabaticity and optimized geometric quantum operations. Phys Rev A, 2021, 103: 062607

    Article  Google Scholar 

  86. Liu S, Shen J H, Zheng R H, et al. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Front Phys, 2022, 17: 21502

    Article  Google Scholar 

  87. Xu G F, Zhao P Z, Xing T H, et al. Composite nonadiabatic holonomic quantum computation. Phys Rev A, 2017, 95: 032311

    Article  Google Scholar 

  88. Zhu Z, Chen T, Yang X, et al. Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace. Phys Rev Appl, 2019, 12: 024024

    Article  Google Scholar 

  89. Li S, Xue Z Y. Dynamically corrected nonadiabatic holonomic quantum gates. Phys Rev Appl, 2021, 16: 044005

    Article  Google Scholar 

  90. Liu B J, Wang Y S, Yung M H. Super-robust nonadiabatic geometric quantum control. Phys Rev Res, 2021, 3: L032066

    Article  Google Scholar 

  91. He Z C, Xue Z Y. Robust nonadiabatic holonomic quantum gates on decoherence-protected qubits. Appl Phys Lett, 2021, 119: 104001

    Article  Google Scholar 

  92. Kuvshinov V I, Kuzmin A V. Robust Hadamard gate for optical and ion trap holonomic quantum computers. Phys Lett A, 2005, 341: 450–453

    Article  MATH  Google Scholar 

  93. Kuvshinov V I, Kuzmin A V. Decoherence induced by squeezing control errors in optical and ion trap holonomic quantum computations. Phys Rev A, 2006, 73: 052305

    Article  Google Scholar 

  94. Li Y, Zhang P, Zanardi P, et al. Non-Abelian geometric quantum memory with an atomic ensemble. Phys Rev A, 2004, 70: 032330

    Article  Google Scholar 

  95. Møller D, Madsen L B, Mølmer K. Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems. Phys Rev A, 2007, 75: 062302

    Article  Google Scholar 

  96. Zheng Y C, Brun T A. Geometric manipulation of ensembles of atoms on an atom chip for quantum computation. Phys Rev A, 2012, 86: 032323

    Article  Google Scholar 

  97. Cholascinski M. Quantum holonomies with Josephson-junction devices. Phys Rev B, 2004, 69: 134516

    Article  Google Scholar 

  98. Zhang P, Wang Z D, Sun J D, et al. Holonomic quantum computation using rf superconducting quantum interference devices coupled through a microwave cavity. Phys Rev A, 2005, 71: 042301

    Article  Google Scholar 

  99. Feng Z B, Zhang X D. Holonomic quantum computation with superconducting charge-phase qubits in a cavity. Phys Lett A, 2008, 372: 1589–1594

    Article  MATH  Google Scholar 

  100. Brosco V, Fazio R, Hekking F W J, et al. Non-Abelian superconducting pumps. Phys Rev Lett, 2008, 100: 027002

    Article  Google Scholar 

  101. Pirkkalainen J M, Solinas P, Pekola J P, et al. Non-Abelian geometric phases in ground-state Josephson devices. Phys Rev B, 2010, 81: 174506

    Article  Google Scholar 

  102. Kamleitner I, Solinas P, Müller C, et al. Geometric quantum gates with superconducting qubits. Phys Rev B, 2011, 83: 214518

    Article  Google Scholar 

  103. Chancellor N, Haas S. Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits. Phys Rev A, 2013, 87: 042321

    Article  Google Scholar 

  104. Fuentes-Guridi I, Pachos J, Bose S, et al. Geometric phases of mesoscopic spin in Bose-Einstein condensates. Phys Rev A, 2002, 66: 022102

    Article  Google Scholar 

  105. Solinas P, Zanardi P, Zanghí N, et al. Semiconductor-based geometrical quantum gates. Phys Rev B, 2003, 67: 121307

    Article  Google Scholar 

  106. Bernevig B A, Zhang S C. Holonomic quantum computing based on the Stark effect. Phys Rev B, 2005, 71: 035303

    Article  Google Scholar 

  107. Parodi D, Sassetti M, Solinas P, et al. Fidelity optimization for holonomic quantum gates in dissipative environments. Phys Rev A, 2006, 73: 052304

    Article  Google Scholar 

  108. Golovach V N, Borhani M, Loss D. Holonomic quantum computation with electron spins in quantum dots. Phys Rev A, 2010, 81: 022315

    Article  Google Scholar 

  109. Budich J C, Rothe D G, Hankiewicz E M, et al. All-electric qubit control in heavy hole quantum dots via non-Abelian geometric phases. Phys Rev B, 2012, 85: 205425

    Article  Google Scholar 

  110. Karimipour V, Majd N. Exact solutions for a universal set of quantum gates on a family of isospectral spin chains. Phys Rev A, 2005, 72: 052305

    Article  MathSciNet  Google Scholar 

  111. Ota Y, Bando M, Kondo Y, et al. Implementation of holonomic quantum gates by an isospectral deformation of an Ising dimer chain. Phys Rev A, 2008, 78: 052315

    Article  MathSciNet  Google Scholar 

  112. Renes J M, Miyake A, Brennen G K, et al. Holonomic quantum computing in symmetry-protected ground states of spin chains. New J Phys, 2013, 15: 025020

    Article  MathSciNet  MATH  Google Scholar 

  113. Bakke K, Furtado C. Quantum holonomies for an electric dipole moment. Phys Lett A, 2011, 375: 3956–3959

    Article  MathSciNet  MATH  Google Scholar 

  114. Pinske J, Teuber L, Scheel S. Highly degenerate photonic waveguide structures for holonomic computation. Phys Rev A, 2020, 101: 062314

    Article  Google Scholar 

  115. Heydari H. Combinatorial structure of a holonomic controlled phase gate. In: Proceedings of AIP Conference Proceedings, 2012. 139–143

  116. Malinovsky V S, Rudin S. Adiabatic holonomic quantum gates for a single qubit. Phys Scr, 2014, T160: 014029

    Article  Google Scholar 

  117. Nordling M, Sjöqvist E. Mixed-state non-Abelian holonomy for subsystems. Phys Rev A, 2005, 71: 012110

    Article  Google Scholar 

  118. Oreshkov O. Holonomic quantum computation in subsystems. Phys Rev Lett, 2009, 103: 090502

    Article  MathSciNet  Google Scholar 

  119. Wu L A, Zanardi P, Lidar D A. Holonomic quantum computation in decoherence-free subspaces. Phys Rev Lett, 2005, 95: 130501

    Article  MathSciNet  Google Scholar 

  120. Zhang X D, Zhang Q, Wang Z D. Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys Rev A, 2006, 74: 034302

    Article  Google Scholar 

  121. Oreshkov O, Brun T A, Lidar D A. Fault-tolerant holonomic quantum computation. Phys Rev Lett, 2009, 102: 070502

    Article  MathSciNet  Google Scholar 

  122. Oreshkov O, Brun T A, Lidar D A. Scheme for fault-tolerant holonomic computation on stabilizer codes. Phys Rev A, 2009, 80: 022325

    Article  Google Scholar 

  123. Zheng Y C, Brun T A. Fault-tolerant scheme of holonomic quantum computation on stabilizer codes with robustness to low-weight thermal noise. Phys Rev A, 2014, 89: 032317

    Article  Google Scholar 

  124. Albert V V, Shu C, Krastanov S, et al. Holonomic quantum control with continuous variable systems. Phys Rev Lett, 2016, 116: 140502

    Article  Google Scholar 

  125. Calzona A, Bauer N, Trauzettel B. Holonomic implementation of CNOT gate on topological Majorana qubits. SciPost Phys Core, 2020, 3: 014

    Article  Google Scholar 

  126. Zhang S B, Rui W B, Calzona A, et al. Topological and holonomic quantum computation based on second-order topological superconductors. Phys Rev Res, 2020, 2: 043025

    Article  Google Scholar 

  127. Fuentes-Guridi I, Girelli F, Livine E. Holonomic quantum computation in the presence of decoherence. Phys Rev Lett, 2005, 94: 020503

    Article  Google Scholar 

  128. Pinske J, Teuber L, Scheel S. Holonomic gates in pseudo-Hermitian quantum systems. Phys Rev A, 2019, 100: 042316

    Article  MathSciNet  Google Scholar 

  129. Kuvshinov V I, Kuzmin A V. Stability of holonomic quantum computations. Phys Lett A, 2003, 316: 391–394

    Article  MathSciNet  MATH  Google Scholar 

  130. Solinas P, Zanardi P, Zanghí N. Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys Rev A, 2004, 70: 042316

    Article  MathSciNet  MATH  Google Scholar 

  131. Florio G, Facchi P, Fazio R, et al. Robust gates for holonomic quantum computation. Phys Rev A, 2006, 73: 022327

    Article  Google Scholar 

  132. Trullo A, Facchi P, Fazio R, et al. Robustness of optimal working points for nonadiabatic holonomic quantum computation. Laser Phys, 2006, 16: 1478–1485

    Article  Google Scholar 

  133. Xu K, Ning W, Huang X J, et al. Demonstration of a non-Abelian geometric controlled-NOT gate in a superconducting circuit. Optica, 2021, 8: 972–976

    Article  Google Scholar 

  134. Egger D J, Ganzhorn M, Salis G, et al. Entanglement generation in superconducting qubits using holonomic operations. Phys Rev Appl, 2019, 11: 014017

    Article  Google Scholar 

  135. Zhang Z, Zhao P Z, Wang T, et al. Single-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutrit. New J Phys, 2019, 21: 073024

    Article  Google Scholar 

  136. Nagata K, Kuramitani K, Sekiguchi Y, et al. Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat Commun, 2018, 9: 3227

    Article  Google Scholar 

  137. Zhu S L, Wang Z D. Unconventional geometric quantum computation. Phys Rev Lett, 2003, 91: 187902

    Article  Google Scholar 

  138. Ji L N, Liang Y, Shen P, et al. Nonadiabatic holonomic quantum computation via path optimization. Phys Rev Appl, 2022, 18: 044034

    Article  Google Scholar 

  139. Li S, Shen P, Chen T, et al. Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity. Front Phys, 2021, 16: 51502

    Article  Google Scholar 

  140. Xu G F, Zhao P Z, Sjöqvist E, et al. Realizing nonadiabatic holonomic quantum computation beyond the three-level setting. Phys Rev A, 2021, 103: 052605

    Article  MathSciNet  Google Scholar 

  141. Ai M Z, Li S, He R, et al. Experimental realization of nonadiabatic holonomic single-qubit quantum gates with two dark paths in a trapped ion. Fundamental Res, 2022, 2: 661–666

    Article  Google Scholar 

  142. André T, Sjöqvist E. Dark path holonomic qudit computation. Phys Rev A, 2022, 106: 062402

    Article  MathSciNet  Google Scholar 

  143. Han Z K, Dong Y Q, Liu B J, et al. Experimental realization of universal time-optimal non-Abelian geometric gates. 2020. ArXiv:2004.10364

  144. Dong Y, Feng C, Zheng Y, et al. Fast high-fidelity geometric quantum control with quantum brachistochrones. Phys Rev Res, 2021, 3: 043177

    Article  Google Scholar 

  145. Liu B J, Huang Z H, Xue Z Y, et al. Superadiabatic holonomic quantum computation in cavity QED. Phys Rev A, 2017, 95: 062308

    Article  Google Scholar 

  146. Du Y, Liang Z, Yan H, et al. Geometric quantum computation with shortcuts to adiabaticity. Adv Quantum Tech, 2019, 2: 1900013

    Article  Google Scholar 

  147. Mousolou V A, Sjöqvist E. Entangling power of holonomic gates in atom-based systems. J Phys A-Math Theor, 2018, 51: 475303

    Article  MathSciNet  MATH  Google Scholar 

  148. Chen Y H, Qin W, Stassi R, et al. Fast binomial-code holonomic quantum computation with ultrastrong light-matter coupling. Phys Rev Res, 2021, 3: 033275

    Article  Google Scholar 

  149. Zheng Y C, Brun T A. Fault-tolerant holonomic quantum computation in surface codes. Phys Rev A, 2015, 91: 022302

    Article  MathSciNet  Google Scholar 

  150. Zhang J, Devitt S J, You J Q, et al. Holonomic surface codes for fault-tolerant quantum computation. Phys Rev A, 2018, 97: 022335

    Article  Google Scholar 

  151. Wu C, Wang Y, Feng X L, et al. Holonomic quantum computation in surface codes. Phys Rev Appl, 2020, 13: 014055

    Article  Google Scholar 

  152. Ai M Z, Li S, Hou Z, et al. Experimental realization of nonadiabatic holonomic single-qubit quantum gates with optimal control in a trapped ion. Phys Rev Appl, 2020, 14: 054062

    Article  Google Scholar 

  153. Dong Y, Zhang S C, Zheng Y, et al. Experimental implementation of universal holonomic quantum computation on solidstate spins with optimal control. Phys Rev Appl, 2021, 16: 024060

    Article  Google Scholar 

  154. Viola L, Knill E, Lloyd S. Dynamical decoupling of open quantum systems. Phys Rev Lett, 1999, 82: 2417–2421

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 12275090), Guangdong Provincial Key Laboratory (Grant No. 2020B1212060066), and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Shen, P., Chen, T. et al. Nonadiabatic holonomic quantum computation and its optimal control. Sci. China Inf. Sci. 66, 180502 (2023). https://doi.org/10.1007/s11432-023-3824-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3824-0

Keywords

Navigation