Skip to main content
Log in

High-performance broadband photodetector based on PtSe2/MoS2 heterojunction from visible to near-infrared region

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Broadband photodetectors based on narrow bandgap 2D materials have garnered considerable interest for application in the field of optoelectronic devices. However, their large dark current hinders device performance. In this work, a PtSe2/MoS2 heterojunction was fabricated for a broadband photodetector operating within the range of visible to near-infrared. The device exhibited suppressed dark currents with a high rectification ratio of 104. The built-in electric field of the heterojunction promoted carrier separation effectively, and the device achieved excellent photoelectric performance with responsivities of 1.7 × 103, 27.52, and 21 mA/W at 635, 785, and 1550 nm wavelengths, respectively. Moreover, the specific detectivities (D*) were 2.2 × 1013 Jones (635 nm), 3.55 × 1011 Jones (785 nm), and 2.72 × 108 Jones (1550 nm). The device demonstrated a rise/fall time of 131/241 µs under 1550 nm laser illumination. Visible and near-infrared imaging detection was also demonstrated based on the heterojunction device at room temperature. This work sheds light on the remarkable potential of PtSe2/MoS2 heterojunctions in the domain of high-performance broadband photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X W, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect. Adv Mater, 2019, 31: 1902044

    Article  CAS  Google Scholar 

  2. Zhang C, Luo Y, Maier S A, et al. Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photon Rev, 2022, 16: 2100714

    Article  ADS  Google Scholar 

  3. Dhanabalan S C, Ponraj J S, Zhang H, et al. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale, 2016, 8: 6410–6434

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Wu C, Wu F M, Hu H Z, et al. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater Today Phys, 2022, 28: 100883

    Article  CAS  Google Scholar 

  5. Cheng Y X, Ye J H, Lai L, et al. Ambipolarity regulation of deep-UV photocurrent by controlling crystalline phases in Ga2O3 nanostructure for switchable logic applications. Adv Elect Mater, 2023, 9: 2201216

    Article  CAS  Google Scholar 

  6. An J R, Zhao X Y, Zhang Y N, et al. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater, 2021, 32: 2110119

    Article  Google Scholar 

  7. An J R, Wang B, Shu C, et al. Research development of 2D materials based photodetectors towards mid-infrared regime. Nano Sel, 2020, 2: 527–540

    Article  Google Scholar 

  8. Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2018, 29: 1803807

    Article  Google Scholar 

  9. Qiu Q X, Huang Z M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv Mater, 2021, 33: 2008126

    Article  CAS  Google Scholar 

  10. Wang H Y, Li Z X, Li D Y, et al. van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv Funct Mater, 2021, 31: 2103106

    Article  CAS  Google Scholar 

  11. Geng H J, Yuan D, Yang Z, et al. Graphene van der Waals heterostructures for high-performance photodetectors. J Mater Chem C, 2019, 7: 11056–11067

    Article  CAS  Google Scholar 

  12. Guan X W, Yu X C, Periyanagounder D, et al. Recent progress in short- to long-wave infrared photodetection using 2D materials and heterostructures. Adv Opt Mater, 2020, 9: 2001708

    Article  Google Scholar 

  13. Zha J J, Luo M C, Ye M, et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv Funct Mater, 2022, 32: 2111970

    Article  CAS  Google Scholar 

  14. Dong Z, Yu W Z, Zhang L B, et al. Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by mutiphysical mechanism. ACS Nano, 2021, 15: 20403–20413

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y F, Tan C W, Wang Z, et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. Sci Adv, 2022, 8: eabq1781

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Luo Z T, Xu H K, Gao W, et al. High-performance and polarization-sensitive imaging photodetector based on WS2/Te tunneling heterostructure. Small, 2023, 19: 2207615

    Article  CAS  Google Scholar 

  17. Ahmad W, Wu J, Zhuang Q D, et al. Research process on photodetectors based on group-10 transition metal dichalcogenides. Small, 2023, 19: 2207641

    Article  CAS  Google Scholar 

  18. Cao B L, Ye Z M, Yang L, et al. Recent progress in van der Waals 2D PtSe2. Nanotechnology, 2021, 32: 412001

    Article  CAS  ADS  Google Scholar 

  19. Yuan J, Sun T, Hu Z X, et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl Mater Interface, 2018, 10: 40614–40622

    Article  CAS  Google Scholar 

  20. Wang Y L, Li L F, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15: 4013–4018

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zhang H T, Li H W, Wang F G, et al. PtSe2 field-effect phototransistor with positive and negative photoconductivity. ACS Appl Electron Mater, 2022, 4: 5177–5183

    Article  CAS  Google Scholar 

  22. Zhao Y D, Qiao J S, Yu Z H, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29: 1604230

    Article  Google Scholar 

  23. Liu X, Wang W H, Yang F, et al. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci China Inf Sci, 2021, 64: 140404

    Article  Google Scholar 

  24. Lin Z T, Zhu W B, Zeng Y H, et al. Enhanced photodetection range from visible to shortwave infrared light by ReSe2/MoTe2 van der Waals heterostructure. Nanomaterials, 2022, 12: 2664

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. An J R, Sun T, Wang B, et al. Efficient graphene in-plane homogeneous p-n-p junction based infrared photodetectors with low dark current. Sci China Inf Sci, 2021, 64: 140403

    Article  Google Scholar 

  26. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8: 497–501

    Article  CAS  ADS  Google Scholar 

  27. Chen Y, Wang X D, Wu G J, et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small, 2018, 14: 1703293

    Article  Google Scholar 

  28. Guo T T, Song X F, Wei P F, et al. High-gain MoS2/Ta2 NiSe5 heterojunction photodetectors with charge transfer and suppressing dark current. ACS Appl Mater Interface, 2022, 14: 56384–56394

    Article  CAS  Google Scholar 

  29. Zeng L H, Lin S H, Li Z J, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater, 2018, 28: 1705970

    Article  Google Scholar 

  30. Zhuo R R, Zeng L H, Yuan H Y, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res, 2018, 12: 183–189

    Article  Google Scholar 

  31. Ganatra R, Zhang Q. Few-layer MoS2: a promising layered semiconductor. ACS Nano, 2014, 8: 4074–4099

    Article  CAS  PubMed  Google Scholar 

  32. Ye L, Li H, Chen Z F, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon, 2016, 3: 692–699

    Article  CAS  Google Scholar 

  33. Besse R, Wang H, West D, et al. Prediction of effective photoelectron and hole separation in type-I MoS2/PtSe2 van der Waals junction. J Phys Chem Lett, 2022, 13: 6407–6411

    Article  CAS  PubMed  Google Scholar 

  34. Wu C, Wu F M, Ma C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater Today Phys, 2022, 23: 100643

    Article  CAS  Google Scholar 

  35. Wu C, Wu F N, Hu H Z, et al. Work function tunable laser induced graphene electrodes for Schottky type solar-blind photodetectors. Appl Phys Lett, 2022, 120: 101102

    Article  CAS  ADS  Google Scholar 

  36. Xue Y Z, Zhang Y P, Liu Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10: 573–580

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Jie J S, Shao Z B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25: 2910–2919

    Article  CAS  Google Scholar 

  38. Wang B, Zou Y T, Lu H Y, et al. Boosting perovskite photodetector performance in NIR using plasmonic bowtie nanoantenna arrays. Small, 2020, 16: 2001417

    Article  CAS  Google Scholar 

  39. Shu K X, Gao W, Wan F S, et al. High-performance broadband photodetectors based on n-MoS2/p-Ge0.9Sn0.1 heterojunctions. ACS Appl Electron Mater, 2021, 3: 3218–3225

    Article  CAS  Google Scholar 

  40. Yuan J T, Najmaei S, Zhang Z H, et al. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus. ACS Nano, 2015, 9: 555–563

    Article  CAS  PubMed  Google Scholar 

  41. Xie C, Zeng L H, Zhang Z X, et al. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale, 2018, 10: 15285–15293

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z X, Zeng L H, Tong X W, et al. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J Phys Chem Lett, 2018, 9: 1185–1194

    Article  CAS  PubMed  Google Scholar 

  43. Wu F, Li Q, Wang P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun, 2019, 10: 4663

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  44. Chen Y X, Zhu Q H, Zhu X D, et al. Gate-tunable high-performance broadband phototransistor array of two-dimensional PtSe2 on SOI. Nano Res, 2023, 16: 7559–7567

    Article  ADS  Google Scholar 

  45. Ye P, Xiao H, Zhu Q H, et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity. Sci China Mater, 2022, 66: 193–201

    Article  Google Scholar 

  46. Wu D, Zhao Z H, Lu W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res, 2021, 14: 1973–1979

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program (Grant No. 2021YFA0717600), National Natural Science Foundation of China (Grant Nos. 62121005, 62022081, 61974099, 62104226, 62204240), Natural Science Foundation of Jilin Province (Grant Nos. 20210101173JC, 20220508030RC), Changchun Key Research and Development Program (Grant No. 21ZY03), and Open Fund of State Key Laboratory of Applied Optics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojuan Li.

Additional information

Supporting information Figures S1–S14, Table S1. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yuan, J., Che, M. et al. High-performance broadband photodetector based on PtSe2/MoS2 heterojunction from visible to near-infrared region. Sci. China Inf. Sci. 67, 132401 (2024). https://doi.org/10.1007/s11432-023-3812-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3812-1

Keywords

Navigation