Skip to main content
Log in

Constructal optimization of a vertical insulating wall based on a complex objective combining heat flow and strength

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

For a vertical insulating wall, a product function of heat flow and strength with power weight is introduced as the complex optimization objective to compromise between insulating performance and mechanical performance. Under the global constraints of fixed external dimensions and safety requirements, the constructal optimization of the wall is carried out by taking the complex function maximization as the objective. It is shown that the maximum of the complex-objective function and its corresponding optimal internal structure design under a certain environmental condition can be obtained by allowing the internal structure of the wall to vary (evolve) freely. The validity, effectivity and applicability of the complex function are proved by the results and the power weight parameter in the range from 0.4 to 4 can compromise between the requirements of insulating and strength simultaneously and preferably. The constructal optimization with coequal attention to heat flow and strength and the corresponding results are discussed in detail. The optimal structure design and the corresponding performance analyses under various environmental conditions of application are presented. When the change of environment is greater and the total Rayleigh number is bigger, the insulating wall with large number of cavities should be employed. When the total Rayleigh number is small, the better performance can be obtained by reasonably employing the insulating wall with small number of cavities. The complex function has better self-adaptability, and the results in the recent literature are special cases of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Street network theory of organization in nature. J Advanced Transportation, 1996, 30(2): 85–107

    Article  Google Scholar 

  2. Bejan A. Shape and Structure, from Engineering to Nature. Cambridge, UK: Cambridge University Press, 2000

    MATH  Google Scholar 

  3. Bejan A, Lorente S. Thermodynamic optimization of flow geometry in mechanical and civil engineering. J Non-Equilib Thermodyn, 2001, 26(4): 305–354

    Article  Google Scholar 

  4. Bejan A, Lorente S. The Constructal Law (La Loi Constructale). Paris: L’Harmatan, 2005

    Google Scholar 

  5. Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys, 2006, 100(4): 041301

    Article  Google Scholar 

  6. Reis A H. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl Mech Rev, 2006, 59(5): 269–282

    Article  Google Scholar 

  7. Bejan A, Lorente S, Miguel A, et al. Along with Constructal Theory. In: Hernandez J, Cosinschi M, eds. UNIL FGSE Workshop Series No. 1. University of Lausanne, Faculty of Geosciences and the Environment, Switzerland, 2006

    Google Scholar 

  8. Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008

    Book  Google Scholar 

  9. Bejan A, Merkx G W. Constructal Theory of Social Dynamics. New York: Springer, 2007

    Google Scholar 

  10. Bejan A, Lorente S, Miguel A F, et al. Constructal Human Dynamics, Security & Sustainability. Amsterdam: IOS Press, 2009

    Google Scholar 

  11. Bejan A, Badescu V, De Vos A. Constructal theory of economics. Appl Energy, 2000, 67(1): 37–60

    Article  Google Scholar 

  12. Zhou S, Chen L, Sun F. Optimization of constructal economics for volume to point transport. Appl Energy, 2007, 84(5): 505–511

    Article  Google Scholar 

  13. Bejan A, Dincer I, Lorente S, et al. Porous and Complex Flow Structures in Modern Technologies. New York: Springer, 2004

    Google Scholar 

  14. Bejan A, Reis A H. Thermodynamic optimization of global circulation and climate. Int J Energy Res, 2005, 29(4): 303–316

    Article  Google Scholar 

  15. Bejan A, Marden J H. Unifying Constructal theory for scale effects in running, swimming and flying. J Experimental Biology, 2006, 209(2): 238–248

    Article  Google Scholar 

  16. Dai W, Bejan A, Tang X, et al. Optimal temperature distribution in a three dimensional triple-layered skin structure with embedded vasculature. J Appl Phys, 2006, 99(10): 104702

    Article  Google Scholar 

  17. Lorente S. Constructal view of electrokinetic transfer through porous media. J Phys D: Appl Phys, 2007, 40(9): 2941–2947

    Article  Google Scholar 

  18. Guo Z, Cheng X, Xia Z. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull, 2003, 48(4): 406–410

    Google Scholar 

  19. Meng J, Liang X, Li Z. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortices flow in tube. Int J Heat Mass Transfer, 2005, 48(16): 3331–3337

    Article  MATH  Google Scholar 

  20. Cheng X, Meng J, Guo Z. Potential capacity dissipation minimization and entropy generation minimization in heat conduction optimization (in Chinese). J Eng Thermophys 2005, 26(6): 1034–1036

    Google Scholar 

  21. Han G, Zhu H, Cheng X, et al. Transfer similarity among heat conduction, elastic motion and electric conduction (in Chinese). J Eng Thermophys, 2005, 26(6): 1022–1024

    Google Scholar 

  22. Guo Z, Zhu H, Liang X. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50(13–14): 2545–2556

    Article  MATH  Google Scholar 

  23. Zhu H, Chen J, Guo Z. Electricity and thermal analogous experimental study for entransy dissipation extreme principle (in Chinese). Prog Natural Sci, 2007, 17(12): 1692–1698

    Google Scholar 

  24. Han G, Guo Z. Two different thermal optimization objective functions: dissipation of heat transport potential capacity and entropy production (in Chinese). J Eng Thermophys, 2007, 27(5): 811–813

    Google Scholar 

  25. Han G, Guo Z. Physical mechanism of heat conduction ability dissipation and its analytical expression (in Chinese). Proc CSEE, 2007, 27(17): 98–102

    Google Scholar 

  26. Liu X, Meng J, Guo Z. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chin Sci Bull, 2009, 54(6): 943–947

    Article  Google Scholar 

  27. Chen Q, Ren J. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin Sci Bull, 2008, 53(23): 3753–3761

    Article  Google Scholar 

  28. Chen Q, Ren J, Guo Z. Field synergy analysis and optimization of decontamination ventilation designs. Int J Heat Mass Transfer, 2008, 51(3–4): 873–881

    Article  MATH  Google Scholar 

  29. Zhang Y, Liu S. The optimization model of the heat conduction structure. Prog Natl Sci, 2008, 18(6): 665–670

    Article  Google Scholar 

  30. Liu X, Guo Z, Meng J. Analyses for entransy dissipation and heat resistance in heat exchangers (in Chinese). Prog Natl Sci, 2008, 18(10): 1186–1190

    Google Scholar 

  31. Cheng X, Xu X, Liang X. Homogenization of temperature field and temperature gradient field. Sci China Ser E-Tech Sci, 2009, 52(10): 2937–2942

    Article  MATH  Google Scholar 

  32. Wu J, Liang X. Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci China Ser E-Tech Sci, 2008, 51(8): 1306–1314

    Article  MATH  MathSciNet  Google Scholar 

  33. Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51(8): 1283–1295

    Article  MATH  Google Scholar 

  34. Wei S, Chen L, Sun F. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E-Tech Sci, 2009, 52(10): 2981–2989

    Article  MATH  Google Scholar 

  35. Wang S, Chen Q, Zhang B, et al. A general theoretical principle for single-phase convective heat transfer enhancement. Sci China Ser E-Tech Sci, 2009, 52(12): 3521–3526

    Article  MathSciNet  Google Scholar 

  36. Xie Z, Chen L, Sun F. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52(12): 3504–3513

    Article  Google Scholar 

  37. Chen Q, Ren J, Guo Z. The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins. Chin Sci Bull, 2009, 54(16): 2862–2870

    Article  Google Scholar 

  38. Xie Z, Chen L, Sun F. Constructal optimization on T-shaped cavity based on entransy dissipation minimization. Chin Sci Bull, 2009, 54(23): 4418–4427

    Article  Google Scholar 

  39. Xia S, Chen L, Sun F. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54(19): 3587–3595

    Article  Google Scholar 

  40. Wang S, Chen Q, Zhang B. An equation of entransy and its application. Chin Sci Bull, 2009, 54(19): 3572–3578

    Article  Google Scholar 

  41. Guo J, Cheng L, Xu M. Entransy dissipation number and its application to heat exchanger performance evaluation. Chin Sci Bull, 2009, 54(15): 2708–2713

    Article  Google Scholar 

  42. Liu X, Guo Z. A novel method for heat exchanger analysis (in Chinese). Acta Phys Sin, 2009, 58(7): 4766–4771

    MathSciNet  Google Scholar 

  43. Chen Q, Wang M, Pan N, et al. Irreversibility of heat conduction in complex multiphase systems and its application to the effective thermal conductivity of porous media. Int J Nonlinear Sci Numer Simul, 2009, 10(1): 57–66

    Google Scholar 

  44. Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34(9): 1199–1206

    Article  Google Scholar 

  45. Chen L, Chen Q, Li Z, et al. Optimization for a heat exchanger couple based on the minimum thermal resistance principle. Int J Heat Mass Transfer, 2009, 52(21–22): 4778–4784

    Article  MATH  Google Scholar 

  46. Wei S. Constructal entransy dissipation rate minimization for heat conduction. Ph D Thesis. Wuhan: Naval University of Engineering, 2009

    Google Scholar 

  47. Li Z, Guo Z. Field Synergy Principle of Heat Convection Optimization (in Chinese). Beijing: Science Press, 2010

    Google Scholar 

  48. Guo Z, Liu X B, Tao W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat and Mass Transfer, 2010, 53(13–14): 2877–2884

    Article  Google Scholar 

  49. Wei S, Chen L, Sun F. Constructal entransy dissipation minimization for ‘volume-point’ heat conduction without the premise of optimized last-order construct. Int J Exergy, 2010, 7(5): 627–639

    Google Scholar 

  50. Xia S, Chen L, Sun F. Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law. Appl Math Model, 2010, 34(8): 2242–2255

    Article  Google Scholar 

  51. Xia S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase processes. Sci China: Tech Sci, 2010, 53(4): 960–968

    Article  Google Scholar 

  52. Wei S, Chen L, Sun F. Constructal optimization of discrete and continuous variable cross-section conducting path based on entransy dissipation rate minimization. Sci China: Tech Sci 2010, 53, doi: 10.1007/s11431-010-0121-5

  53. Wei S, Chen L, Sun F. Constructal entransy dissipation minimization for ‘volume-point’ heat conduction based on triangular element. Thermal Sci, 2010, (in press)

  54. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate minimization for “disc-point” heat conduction. Chin Sci Bull, 2010, (in press)

  55. Chen L. Finite Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  56. Wang J, He J, Mao Z. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G-Phys Mech & Astron, 2007, 50(2): 163–176

    Article  Google Scholar 

  57. Song H, Chen L, Sun F. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law. Sci China Ser G-Phys Mech & Astron, 2008, 51(9): 1272–1286

    Article  MATH  Google Scholar 

  58. Li J, Chen L, Sun F. Optimal configuration for a finite high-temperature source heat engine cycle with complex heat transfer law. Sci China Ser G-Phys Mech & Astron, 2009, 52(4): 587–592

    Article  Google Scholar 

  59. Xia S, Chen L, Sun F. The optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G-Phys Mech & Astron, 2009, 52(5): 708–719

    Article  Google Scholar 

  60. He J, He X, Tang W. The performance characteristics of an irreversible quantum Otto harmonic cycles. Sci China Ser G-Phys Mech & Astron, 2009, 52(9): 1317–1323

    Article  Google Scholar 

  61. Xia S, Chen L, Sun F. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law. Sci China Ser G-Phys Mech & Astron, 2009, 52(12): 1961–1970

    Article  Google Scholar 

  62. Liu X, Chen L, Wu F, et al. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Sci China Ser G-Phys Mech & Astron, 2009, 52(12): 1976–1988

    Article  Google Scholar 

  63. Xia D, Chen L, Sun F. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci China Ser B-Chem, 2008, 51(10): 958–970

    Article  Google Scholar 

  64. Shu L, Chen L, Sun F. The minimal average heat consumption for heat-driven binary separation process with linear phenomenological heat transfer law. Sci China Ser B-Chem, 2009, 52(8): 1154–1163

    Article  Google Scholar 

  65. Ding Z, Chen L, Sun F. Thermodynamic characteristic of a Brownian heat pump in a spatially periodic temperature field. Sci China: Phys Mech & Astron, 2010, 53(5): 876–885, doi: 10.1007/s11433-010-0181-3

    Article  Google Scholar 

  66. Ma K, Chen L, Sun F. Optimal paths for a light-driven engine with linear phenomenological heat transfer law. Sci China: Chem, 2010, 53(4): 917–926

    Article  Google Scholar 

  67. Xia S, Chen L, Sun F. Maximum work configurations of finite potential reservoir chemical engines. Sci China: Chem, 2010, 53(5): 1168–1176, doi: 10.1007/s11426-010-0132-x

    Article  Google Scholar 

  68. Dan N, Bejan A. Constructal tree networks for the time-dependent discharge of finite-size volume to one point. J Appl Phys, 1998, 84(6): 3042–3050

    Article  Google Scholar 

  69. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Trans ASME J Heat Transfer, 1997, 40(4): 799–816

    MATH  Google Scholar 

  70. Zhou S, Chen L, Sun F. Optimization of constructal volume-point conduction with variable cross-section conducting path. Energy Convers Mgmt, 2007, 48(1): 106–111

    Article  MathSciNet  Google Scholar 

  71. Wu W, Chen L, Sun F. On the “area to point” flow problem based on constructal theory. Energy Convers Mgmt, 2007, 48(1): 101–105

    Article  Google Scholar 

  72. Wu W, Chen L, Sun F. Improvement of tree-like network constructal method for heat conduction optimization. Sci China Ser E-Tech Sci, 2006, 49(3): 332–341

    Article  Google Scholar 

  73. Wei S, Chen L, Sun F. The volume-point constructal optimization for discrete variable cross-section conducting path. Appl Energy, 2009, 86(7–8): 1111–1118

    Article  Google Scholar 

  74. Chen L, Wu W, Sun F. Constructal re-optimization of heat conduction with the triangular elemental area. Rev Mexi Fis, in press

  75. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Transfer, 2000, 43(12–15): 2101–2115

    Article  MATH  Google Scholar 

  76. Bejan A, Rocha L A O, Lorente S. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. Int J Thermal Sci, 2000, 39(9–11): 949–960

    Article  Google Scholar 

  77. Bejan A, Fautrelle Y. Constructal multi-scale structure for maximal heat transfer density. Acta Mechanica, 2003, 163(1–2): 39–49

    MATH  Google Scholar 

  78. da Silva A K, Bejan A. Constructal multi-scale structure for maximal heat transfer density in natural convection. Int J Heat Fluid Flow, 2005, 26(1): 34–44

    Article  Google Scholar 

  79. Lorente S, Wechsatol W, Bejan A. Tree-shaped flow structures designed by minimizing path lengths. Int J Heat Mass Transfer, 2002, 45(16): 3299–3312

    Article  MATH  Google Scholar 

  80. Vargas J V C, Bejan A. Thermodynamic optimization of finned crossflow heat exchangers for aircraft environmental control systems. Int J Heat Fluid Flow, 2001, 22(6): 657–665

    Article  Google Scholar 

  81. Morega A M, Bejan A. A constructal approach to the optimal design of photovoltaic cells. Int J Green Energy, 2005, 2(3): 233–242

    Article  Google Scholar 

  82. Vargas J V C, Ordonez J C, Bejan A. Constructal PEM fuel cell stack design. Int J Heat Mass Transfer, 2005, 48(21–22): 4410–4427

    Article  MATH  Google Scholar 

  83. Bejan A, Errera M R. Convective trees of fluid channels for volumetric cooling. Int J Heat Mass Transfer, 2000, 43(17): 3105–3118

    Article  MATH  Google Scholar 

  84. Wechsatol W, Lorente S, Bejan A. Dendritic convection on a disc. Int J Heat Mass Transfer, 2003, 46(23): 4381–4391

    Article  MATH  Google Scholar 

  85. da Silva A K, Bejan A. Constructal multi-scale structure for maximal heat transfer density in natural convection. Int J Heat Fluid Flow, 2005, 26(1): 34–44

    Article  Google Scholar 

  86. Zimparov V D, da Silva A K, Bejan A. Thermodynamic optimization of tree-shaped flow geometries. Int J Heat Mass Transfer, 2006, 49(9–10): 1619–1630

    Article  MATH  Google Scholar 

  87. Luo L, Fan Y, Zhang W, et al. Integration of constructal distributors to a mini crossflow heat exchanger and their assembly configuration optimization. Chem Eng Sci, 2007, 62(13): 3605–3619

    Article  Google Scholar 

  88. Wechsatol W, Lorente S, Bejan A. Tree-shaped insulated designs for the uniform distribution of hot water over an area. Int J Heat Mass Transfer, 2001, 44(16): 3111–3123

    Article  MATH  Google Scholar 

  89. Azoumah Y, Neveu P, Mazet N. Constructal design combined with entropy generation minimization for solid-gas reactors. Int J Thermal Sci, 2006, 45(7): 716–728

    Article  Google Scholar 

  90. Zhou S, Chen L, Sun F. Constructal optimization for solid-gas reactors based on triangular element. Sci China Ser E-Tech Sci, 2008, 51(9): 1554–1562

    Article  MATH  Google Scholar 

  91. Lorente S, Bejan A. Combined ‘flow and strength’ geometric optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength. Int J Heat Mass Transfer, 2002, 45(16): 3313–3320

    Article  MATH  Google Scholar 

  92. Gosselin L, Bejan A, Lorente S. Combined ‘heat flow and strength’ optimization of geometry: mechanical structures most resistant to thermal attack. Int J Heat Mass Transfer, 2004, 47(14–16): 3477–3489

    Article  MATH  Google Scholar 

  93. Gosselin L, da Silva A K. Combined ‘heat transfer and power dissipation’ optimization of nanofluid flows. Appl Phys Letter, 2004, 85(18): 4160–4162

    Article  Google Scholar 

  94. Gosselin L, Bejan A. Constructal thermal optimization of an electromagnet. Int J Thermal Sci, 2004, 43(4): 331–338

    Article  Google Scholar 

  95. Wei S, Chen L, Sun F. Constructal complex-objective optimization of electromagnet based on magnetic induction and maximum temperature difference. Rev Mexi Fis, 2010, in press

  96. Bejan A. Convection Heat Transfer, 2nd ed. New York: Wiley, 1995

    Google Scholar 

  97. Bejan A. Note on Gill’s solution for free convection in a vertical enclosure. J Fluid Mech, 1979, 90: 561–568

    Article  Google Scholar 

  98. Churchill S W, Usagi R. A standardized procedure for the production of correlations in the form of a common empirical equation. Indust Eng Chem Fund, 1974, 13(1): 39–44

    Article  Google Scholar 

  99. Chen L, Zhang J. MCDM and the introduction of optimal model selection and design application of steam turbine in warship (in Chinese). Turbine Tech, 1986, 28(5): 58–70

    Google Scholar 

  100. Yan Z. η and P of a Carnot engine at maximum (η λ P) (in Chinese). J Xiamen Univ, 1986, 25(3): 279–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Chen, L. & Sun, F. Constructal optimization of a vertical insulating wall based on a complex objective combining heat flow and strength. Sci. China Technol. Sci. 53, 2278–2290 (2010). https://doi.org/10.1007/s11431-010-4003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4003-7

Keywords

Navigation