Skip to main content
Log in

Assessment and improvement of Noah-MP for simulating water and heat exchange over alpine grassland in growing season

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Alpine grassland is the main ecosystem of the Tibetan Plateau (TP), thus accurate simulation of water and heat exchange in the grassland will significantly enhance the understanding of the land-atmosphere interaction process on the TP. In this study, we assessed and improved the ensemble numerical simulations of the community Noah land surface model with multiparameterization options (Noah-MP) by using observations collected from four alpine grassland observation sites. The four observation sites belong to the upper Heihe River Basin Integrated Observatory Network located in the northeastern part of the TP. First, an ensemble of 1008 numerical simulation experiments, based on multiparameterization options of seven physical processes/variables in the Noah-MP, was carried out for the vegetation growing season. The Taylor skill score was then used to assess the model performance and select the optimal combination of parameterization options for a more exact simulation of the water and heat exchange in alpine grassland. The accuracy of Noah-MP simulation was further improved by introducing new parameterizations of thermal roughness length, soil hydraulic properties, and vertical root distribution. It was found that: (1) Simulation of water and heat exchange over alpine grassland in the growing season was mainly affected by the parameterizations of dynamic vegetation, canopy stomatal resistance, runoff and groundwater dynamics, and surface exchange coefficient for heat transfer. Selection of different parameterization options for these four physical processes/variables led to large differences in the simulation of water and heat fluxes. (2) The optimal combination of parameterization options selected in the current Noah-MP framework suffered from significant overestimation of sensible heat flux (H) and underestimation of soil moisture (θ) at all observation sites. (3) The overestimation of H was significantly improved by introducing a new parameterization of thermal roughness length. Furthermore, the underestimation of θ was resolved by introducing a new parameterization of soil hydraulic properties that considered the organic matter effect and a new vertical distribution function for the vegetation root system. The results of this study provide an important reference for further improving the simulation of water and heat exchange by using the land surface model in alpine grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball J T, Woodrow I E, Berry J A. 1987. A Model Predicting Stomatal Conductance and Its Contribution to the Control of Photosynthesis Under Different Environmental Conditions. In: Biggins J, ed. Process in Photosynthesis Research, vol. 1. Dordrecht: Martinus Nijhoff. 221–234

  • Barlage M, Tewari M, Chen F, Miguez-Macho G, Yang Z L, Niu G Y. 2015. The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Clim Change, 129: 485–498

    Article  Google Scholar 

  • Bi H, Ma J, Zheng W, Zeng J. 2016. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J Geophys Res-Atmos, 121: 2658–2678

    Article  Google Scholar 

  • Bonan G B, Oleson K W, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson R E, Yang Z L. 2002. The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim, 15: 3123–3149

    Article  Google Scholar 

  • Brutsaert W A. 1982. Evaporation into the Atmosphere. Dordrecht: D. Reidel. 299

    Book  Google Scholar 

  • Che T, Li X, Liu S M, Li H, Xu Z W, Tan J, Zhang Y, Ren Z G, Xiao L, Deng J, Jin R, Ma M G, Wang J, Yang X. 2019. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth Syst Sci Data, 11: 1483–1499

    Article  Google Scholar 

  • Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev, 129: 569–585

    Article  Google Scholar 

  • Chen F, Janjić Z, Mitchell K. 1997. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound-Layer Meteor, 85: 391–421

    Article  Google Scholar 

  • Chen F, Zhang Y. 2009. On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys Res Lett, 36: L10404

    Article  Google Scholar 

  • Chen F K, Mitchell K, Schaake J, Xue Y, Pan H L, Koren V, Duan Q Y, Ek M, Betts A. 1996. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res, 101: 7251–7268

    Article  Google Scholar 

  • Chen J J. 2020. Research on change of fractional vegetation cover of alpine grassland and its environmental impact factors on the Qinghai-Tibetan Plateau (in Chinese). Acta Geodaet Cartogr Sin, 49: 533

    Google Scholar 

  • Chen X, Su Z, Ma Y, Yang K, Wen J, Zhang Y. 2013. An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. J Appl Meteor Climatol, 52: 607–622

    Article  Google Scholar 

  • Chen Y Y, Yang K, Tang W J, Qin J, Zhao L. 2012. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci China Earth Sci, 55: 1001–1011

    Article  Google Scholar 

  • Collatz G J, Ball J T, Grivet C, Berry J A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric For Meteorol, 54: 107–136

    Article  Google Scholar 

  • Collatz G J, Ribas-Carbo M, Berry J A. 1992. Coupled photosynthesisstomatal conductance model for leaves of C4 plants. Funct Plant Biol, 19: 519–538

    Article  Google Scholar 

  • Cuntz M, Mai J, Samaniego L, Clark M, Wulfmeyer V, Branch O, Attinger S, Thober S. 2016. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J Geophys Res-Atmos, 121: 10,676–10,700

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson R E, Baker I, Bonan G B, Bosilovich M G, Denning A S, Dirmeyer P A, Houser P R, Niu G, Oleson K W, Schlosser C A, Yang Z L. 2003. The common land model. Bull Am Meteorol Soc, 84: 1013–1024

    Article  Google Scholar 

  • Dickinson R E, Shaikh M, Bryant R, Graumlich L. 1998. Interactive canopies for a climate model. J Clim, 11: 2823–2836

    Article  Google Scholar 

  • Ding M J, Zhang Y L, Liu L S, Wang Z F. 2010. Temporal and spatial distribution of grassland coverage change in Tibetan Plateau since 1982 (in Chinese). J Nat Resour, 25: 2114–2122

    Google Scholar 

  • Ek M B, Mitchell K E, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley J D. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res, 108: 2002JD003296

    Article  Google Scholar 

  • Gan Y J, Liang X Z, Duan Q Y, Chen F, Li J, Zhang Y. 2019. Assessment and reduction of the physical parameterization uncertainty for Noah-MP land surface model. Water Resour Res, 55: 5518–5538

    Article  Google Scholar 

  • Gao Q Z, Wan Y F, Xu H M, Li Y, Jiangcun W Z, Borjigidai A. 2010. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat Int, 226: 143–150

    Article  Google Scholar 

  • Gao Y, Li K, Chen F, Jiang Y, Lu C. 2015. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J Geophys Res-Atmos, 120: 9258–9278

    Article  Google Scholar 

  • Gayler S, Wöhling T, Grzeschik M, Ingwersen J, Wizemann H D, Warrach-Sagi K, Högy P, Attinger S, Streck T, Wulfmeyer V. 2014. Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites. Water Resour Res, 50: 1337–1356

    Article  Google Scholar 

  • Guo L, Du S H, Xue D Y, Cai L. 2012. Spatiotemporal differentiation of land cover change and grassland degradation pattern in Yangtze River headwaters area (in Chinese). Chin J Appl Ecol, 23: 1219–1225

    Google Scholar 

  • Hong S, Yu X, Park S K, Choi Y S, Myoung B. 2014. Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm. Geosci Model Dev, 7: 2517–2529

    Article  Google Scholar 

  • Immerzeel W W, van Beek L P H, Bierkens M F P. 2010. Climate change will affect the Asian water towers. Science, 328: 1382–1385

    Article  Google Scholar 

  • Jarvis P G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans R Soc Lond B, 273: 593–610

    Article  Google Scholar 

  • Li J, Zhang G, Chen F, Peng X, Gan Y. 2019. Evaluation of land surface subprocesses and their impacts on model performance with global flux data. J Adv Model Earth Syst, 11: 1329–1348

    Article  Google Scholar 

  • Li X, Wu T, Wu X, Chen J, Zhu X, Hu G, Li R, Qiao Y, Yang C, Hao J, Ni J, Ma W. 2021. Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai-Tibet Plateau. Geosci Model Dev, 14: 1753–1771

    Article  Google Scholar 

  • Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M, Liu Q, Jin R, Guo J, Wang L, Wang W, Qi Y, Li H, Xu T, Ran Y, Hu X, Shi S, Zhu Z, Tan J, Zhang Y, Ren Z. 2018. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone J, 17: 180072

    Article  Google Scholar 

  • Ma N, Niu G Y, Xia Y, Cai X, Zhang Y, Ma Y, Fang Y. 2017. A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J Geophys Res-Atmos, 122: 12,245

    Article  Google Scholar 

  • Manabe S. 1969. Climate and ocean circulation: 1. The atmospheric circulation and the hydrology of the earth’s surface. Monthly Weather Rev, 97: 939–805

    Google Scholar 

  • Niu G Y, Yang Z L. 2004. Effects of vegetation canopy processes on snow surface energy and mass balances. J Geophys Res, 109: D23111

    Google Scholar 

  • Niu G Y, Yang Z L, Dickinson R E, Gulden L E. 2005. A simple TOP-MODEL-based runoff parameterization (SIMTOP) for use in global climate models. J Geophys Res, 110: D21106

    Article  Google Scholar 

  • Niu G Y, Yang Z L, Dickinson R E, Gulden L E, Su H. 2007. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res, 112: D07103

    Google Scholar 

  • Niu G Y, Yang Z L, Mitchell K E, Chen F, Ek M B, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res, 116: D12109

    Article  Google Scholar 

  • Oleson K W, Dai Y, Bonan G B, Bosilovichm M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G Y, Thornton P, Vertenstein M, Yang Z L, Zeng X. 2004. Technical description of the Community Land Model (CLM). Technical Report. National Center for Atmosphere Research. 174

  • Oleson K W, Niu G Y, Yang Z L, Lawrence D M, Thornton P E, Lawrence P J, Stöckli R, Dickinson R E, Bonan G B, Levis S, Dai A, Qian T. 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res, 113: G01021

    Google Scholar 

  • Santanello Jr. J A, Peters-Lidard C D, Kumar S V. 2011. Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction. J Hydrometeorol, 12: 766–786

    Article  Google Scholar 

  • Schaake J C, Koren V I, Duan Q Y, Mitchell K, Chen F. 1996. Simple water balance model for estimating runoff at different spatial and temporal scales. J Geophys Res, 101: 7461–7475

    Article  Google Scholar 

  • Sellers P J, Dickinson R E, Randall D A, Betts A K, Hall F G, Berry J A, Collatz G J, Denning A S, Mooney H A, Nobre C A, Sato N, Field C B, Henderson-Sellers A. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275: 502–509

    Article  Google Scholar 

  • Shangguan W, Dai Y, Duan Q, Liu B, Yuan H. 2014. A global soil data set for earth system modeling. J Adv Model Earth Syst, 6: 249–263

    Article  Google Scholar 

  • Song X D, Brus D J, Liu F, Li D C, Zhao Y G, Yang J L, Zhang G L. 2016. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China. Geoderma, 261: 11–22

    Article  Google Scholar 

  • Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res, 106: 7183–7192

    Article  Google Scholar 

  • Wang G X, Hu H C, Wang Y B, Chen L. 2007. Response of alpine cold ecosystem biomass to climate changes in permafrost regions of the Tibetan Plateau (in Chinese). J Glaciol Geocryol, 29: 671–679

    Google Scholar 

  • Xiao Z, Liang S, Wang J, Xiang Y, Zhao X, Song J. 2016. Long-time-series global land surface satellite leaf area index product derived from modis and avhrr surface reflectance. IEEE Trans Geosci Remote Sens, 54: 5301–5318

    Article  Google Scholar 

  • Xue Y, Sellers P J, Kinter J L, Shukla J. 1991. A simplified biosphere model for global climate studies. J Clim, 4: 345–364

    Article  Google Scholar 

  • Yang K, Chen Y Y, Qin J. 2009. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci, 13: 687–701

    Article  Google Scholar 

  • Yang R, Friedl M A. 2003. Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. J Geophys Res, 108: 8615

    Article  Google Scholar 

  • Yang Y H, Piao S L. 2006. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau (in Chinese). J Plant Ecol, 29: 671–679

    Google Scholar 

  • Yang Z L, Dickinson R E. 1996. Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the soil moisture workshop and evaluation of its performance. Glob Planet Change, 13: 117–134

    Article  Google Scholar 

  • Yang Z L, Niu G Y, Mitchell K E, Chen F, Ek M B, Barlage M, Long-uevergne L, Manning K, Niyogi D, Tewari M, Xia Y. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J Geophys Res, 116: D12110

    Article  Google Scholar 

  • You Y, Huang C, Yang Z, Zhang Y, Bai Y, Gu J. 2020. Assessing Noah-MP parameterization sensitivity and uncertainty interval across snow climates. J Geophys Res-Atmos, 125: e30417

    Article  Google Scholar 

  • Zhang G, Chen F, Gan Y. 2016. Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J Geophys Res-Atmos, 121: 9576–9596

    Article  Google Scholar 

  • Zheng D, van der Velde R, Su Z, Wang X, Wen J, Booij M J, Hoekstra A Y, Chen Y. 2015a. Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow. J Hydrometeorol, 16: 2659–2676

    Article  Google Scholar 

  • Zheng D, van der Velde R, Su Z, Booij M J, Hoekstra A Y, Wen J. 2014. Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions. J Hydrometeorol, 15: 921–937

    Article  Google Scholar 

  • Zheng D, van der Velde R, Su Z, Wang X, Wen J, Booij M J, Hoekstra A Y, Chen Y. 2015b. Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport. J Hydrometeorol, 16: 2677–2694

    Article  Google Scholar 

  • Zheng D, van der Velde R, Su Z, Wen J, Booij M J, Hoekstra A Y, Wang X. 2015c. Under-canopy turbulence and root water uptake of aT ibetan meadow ecosystem modeled by Noah-MP. Water Resour Res, 51: 5735–5755

    Article  Google Scholar 

  • Zheng H, Yang Z L, Lin P, Wei J, Wu W Y, Li L, Zhao L, Wang S. 2019. On the sensitivity of the precipitation partitioning into evapotranspiration and runoff in land surface parameterizations. Water Resour Res, 55: 95–111

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the scientists, engineers, and students who participated in WATER and HiWATER field campaigns. For data access, please contact the corresponding author Shaomin Liu (smliu@bnu.edu.cn). This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA20100101, XDA20100103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghai Zheng or Shaomin Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zheng, D., Liu, S. et al. Assessment and improvement of Noah-MP for simulating water and heat exchange over alpine grassland in growing season. Sci. China Earth Sci. 65, 536–552 (2022). https://doi.org/10.1007/s11430-021-9852-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9852-2

Keywords

Navigation