Skip to main content
Log in

Development of radiation and temperature-based empirical models for accurate daily reference evapotranspiration estimation in Iraq

  • ORIGINAL PAPER
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Reliable estimation of reference evapotranspiration (ETo), an essential component of optimal irrigation management, is challenging in many regions due to its complex dependence on meteorological factors. Alternative empirical models, often used to estimate ETo considering data limitations, provide highly unreliable estimates for Iraq. This study aimed to formulate simpler empirical models for accurate ETo estimation with fewer variables in different climate regions of Iraq. The metaheuristic Whale Optimization Algorithm (WOA) was used to finetune the coefficients of the nonlinear least square fitting regression (NLLSF) model during development. Two simpler models were developed based on (1) only mean air temperature (T) (NLLSF-T) and (2) solar radiation and T (NLLSF-R) as inputs. The performance of the models was validated using historical ground observations (2012–2021), and the ETo was estimated using the Penman–Monteith method from the reanalyzed (ERA5) datasets (1959–2021). The models' spatial, seasonal, and temporal performance in estimating daily ETo was rigorously evaluated using multiple statistical metrics and visual presentations. The Kling-Gupta Efficiency (KGE) and normalized root mean square error (NRMSE) of the NLLSF-T model were 0.95 and 0.30, respectively, compared to 0.75 and 0.40 for Kharrufa, the best-performing temperature-based models in Iraq. Similarly, NLLSF-R improved the KGE from 0.78 to 0.97 in KGE and NRMSE from 0.44 to 0.22 compared to Caprio, the best-performing radiation-based model in Iraq. The spatial assessment revealed both the models' excellent performance over most of Iraq, except in the far north, indicating their suitability in estimating ETo in arid and semi-arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

R software, R.3.4, and MATLAB were used for writing the code that can be provided upon request.

References

  • Abdollahzadeh B, SoleimanianGharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36:5887–5958.  https://doi.org/10.1002/int.22535

  • Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S (2022) Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Adv Eng Softw 174. https://doi.org/10.1016/j.advengsoft.2022.103282

  • Abtew W (1996) Evapotranspiration measurements and modeling for three wetland systems in South Florida 1. JAWRA J Am Water Resour Assoc 32(3):465–473. https://doi.org/10.1111/j.1752-1688.1996.tb04044.x

    Article  Google Scholar 

  • Agrawal Y, Kumar M, Ananthakrishnan S, Kumarapuram G (2022) Evapotranspiration modeling using different tree based ensembled machine learning algorithm. Water Resour Manage 36:1025–1042

    Article  Google Scholar 

  • Al-Ansari N (2013) Management of water resources in Iraq: perspectives and prognoses. Engineering 5:667–684

    Article  Google Scholar 

  • Al-Ansari N, Ali A and Knutsson S (2015) Iraq water resources planning: perspectives and prognoses. Int Confe Civil Constr Eng 26/01/2015–27/01/2015. URN: urn:nbn:se:ltu:diva-39590

  • Albrecht F (1950) Die methoden zur bestimmung der verdunstung der natürlichen erdoberfläche. Archiv für Meteorol, Geophysik und Bioklimatologie, Serie B 2:1–38

    Article  Google Scholar 

  • Al-Hasani AA (2021) Trend analysis and abrupt change detection of streamflow variations in the lower Tigris River Basin, Iraq. Int J River Basin Manag 19:523–534. https://doi.org/10.1080/15715124.2020.1723603

    Article  Google Scholar 

  • Al-Hasani AAJ, Shahid S (2023) Assessment of 40 empirical models for estimating reference evapotranspiration under the three major climate zones of Iraq. J Irrig Drain Eng 149:04023025. https://doi.org/10.1061/JIDEDH.IRENG-10187

  • AL-Hasani AA J, Shahid S, (2022) Spatial distribution of the trends in potential evapotranspiration and its influencing climatic factors in Iraq. Theor Appl Climatol 150(1–2):677–696. https://doi.org/10.1007/s00704-022-04184-4

    Article  Google Scholar 

  • Allen R, Pereira LS, Raes D, Smith M (1998a) Chapter 1. Introduction to evapotranspiration. Crop evapotranspiration–Guidelines for computing crop water requirements [online]. Food and Agriculture Organization of the United Nations (FAO). Irrigation and Drainage Paper, 56

  • Allen RG, Pereira LS, Raes D, Smith M (1998b) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300:D05109

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998c) FAO Irrigation and drainage paper No. 56. Rome: Food Agric Org Unit Nat 56:156

  • Baier W, Robertson GW (1965) Estimation of latent evaporation from simple weather observations. Can J Plant Sci 45:276–284

    Article  Google Scholar 

  • Bates D (1988) Nonlinear regression analysis and its applications. Wiley Series in Probability and Statistics. New York google schola, vol 2, pp 379–416

  • Bell B, Hersbach H, Simmons A, Berrisford P, Dahlgren P, Horányi A, Muñoz-Sabater J, Nicolas J, Radu R, Schepers D (2021) The ERA5 global reanalysis: Preliminary extension to 1950. Q J R Meteorol Soc 147:4186–4227

    Article  Google Scholar 

  • Brockamp B, Wenner H (1963) Verdunstungsmessungen auf den Steiner see bei münster. Dt Gewässerkundl Mitt 7:149–154

    Google Scholar 

  • Caprio JM (1974) The solar thermal unit concept in problems related to plant development and potential evapotranspiration. Phenology and seasonality modeling. Springer, Berlin, pp 353–364. https://doi.org/10.1007/978-3-642-51863-8_29

  • Chia MY, Huang YF, Koo CH (2020) Support vector machine enhanced empirical reference evapotranspiration estimation with limited meteorological parameters. Comput Electron Agric 175:105577

    Article  Google Scholar 

  • Chia MY, Huang YF, Koo CH (2021) Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine. Agric Water Manag 243:106447

    Article  Google Scholar 

  • Dalton J (1802) Experimental Essays, on the Constitution of Mixed Gases: On the Force of Steam Or Vapour from Water and Other Liquids in Different Temperatures, Both in a Torricellian Vacuum and in Air; on Evaporation; and on the Expansion of Elastic Fluids by Heat, RW Dean & Company Market-street-lane

  • Diop L, Samadianfard S, Bodian A, Yaseen ZM, Ghorbani MA, Salimi H (2020) Annual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithm. Water Resour Manage 34:733–746. https://doi.org/10.1007/s11269-019-02473-8

    Article  Google Scholar 

  • Doorenbos J, Pruitt W (1977) Crop water requirements. FAO irrigation and drainage paper 24. Land and Water Development Division, FAO, Rome, 144. Food and Agriculture Organization of the United Nations

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Article  Google Scholar 

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16:33–45

    Article  Google Scholar 

  • Ehteram M, Singh VP, Ferdowsi A, Mousavi SF, Farzin S, Karami H, Mohd NS, Afan HA, Lai SH, Kisi O (2019) An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PLoS ONE 14:e0217499

    Article  CAS  Google Scholar 

  • Ellenburg WL, Cruise J, Singh VP (2018) The role of evapotranspiration in streamflow modeling–An analysis using entropy. J Hydrol 567:290–304

    Article  Google Scholar 

  • Fathian F, Mehdizadeh S, Sales AK, Safari MJS (2019) Hybrid models to improve the monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. J Hydrol 575:1200–1213

    Article  Google Scholar 

  • Fox J, Weisberg S (2002) Nonlinear regression and nonlinear least squares. Citeseer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a2f2ab9edf3fe6e970c651ac3a43dc0aff79acbc

  • Gangopadhyaya M, Urwaev V, Omar M, Nordenson T, Harbeck G (1966) Measurement and estimation of evaporation and evapotranspiration. Tech, Note

    Google Scholar 

  • Ghahreman R, Rahimzadegan M (2022) Calculating net radiation of freshwater reservoir to estimate spatial distribution of evaporation using satellite images. J Hydrol 605:127392

    Article  Google Scholar 

  • Gharehchopogh FS, Nadimi-Shahraki MH, Barshandeh S, Abdollahzadeh B, Zamani H (2023) Cqffa: A chaotic quasi-oppositional farmland fertility algorithm for solving engineering optimization problems. J Bionic Eng 20:158–183

    Article  Google Scholar 

  • Gleixner S, Demissie T, Diro GT (2020) Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere 11:996

    Article  Google Scholar 

  • Goyal S, Bhushan S, Kumar Y, Rana AUHS, Bhutta MR, Ijaz MF, Son Y (2021) An optimized framework for energy-resource allocation in a cloud environment based on the whale optimization algorithm. Sensors 21:1583

    Article  Google Scholar 

  • Goyal P, Kumar S, Sharda R (2023) A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives. Comput Electron Agric 209:107836

    Article  Google Scholar 

  • Granata F (2019) Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric Water Manag 217:303–315

    Article  Google Scholar 

  • Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  • Hamon WR (1963) Computation of direct runoff amounts from storm rainfall. Int Assoc Sci Hydrol Publ 63:52–62

    Google Scholar 

  • Hansen PC, Pereyra V, Scherer G (2013) Least squares data fitting with applications, JHU Press. https://books.google.iq/books?hl=en&lr=&id=8IrZe3QX0LQC&oi=fnd&pg=PP2&dq=+HANSEN,+P.+C.,+PEREYRA,+V.+%26+SCHERER,+G.+2013

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Dahlgren P, Horányi A, Munoz-Sebater J, Nicolas J, Radu R, Schepers D, Simmons A (2020) The ERA5 Global Reanalysis: achieving a detailed record of the climate and weather for the past 70 years. Eur Geophys Union Gen Assemb, 3–8

  • Irmak S, Allen R, Whitty E (2003) Daily grass and alfalfa-reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida. J Irrig Drain Eng 129:360–370

    Article  Google Scholar 

  • Irmak S, Irmak A, Allen R, Jones J (2003) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig Drain Eng 129:336–347

    Article  Google Scholar 

  • Jasim AI, Awchi TA (2020) Regional meteorological drought assessment in Iraq. Arab J Geosci 13:284

    Article  Google Scholar 

  • Jensen ME, Haise HR (1963) Estimating evapotranspiration from solar radiation. J Irrig Drain Div 89:15–41

    Article  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech Rep-tr06, Erciyes Univ, Eng Facult, Comput

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc of ICNN'95-Int Conf Neural Net, vol 4. IEEE, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  • Kharrufa N (1985) Simplified equation for evapotranspiration in arid regions. Beiträge zur Hydrol 5:39–47

    Google Scholar 

  • Kumar M, Bandyopadhyay A, Raghuwanshi N, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26:531–545

    Article  Google Scholar 

  • Kumar R, Jat M, Shankar V (2012) Methods to estimate irrigated reference crop evapotranspiration–a review. Water Sci Technol 66:525–535. https://doi.org/10.2166/wst.2012.191

    Article  CAS  Google Scholar 

  • Li M, Chu R, Islam ARMT, Shen S (2018) Reference evapotranspiration variation analysis and its approaches evaluation of 13 empirical models in sub-humid and humid regions: A case study of the Huai river basin, eastern China. Water 10:493

    Article  Google Scholar 

  • Li S, Wang G, Sun S, Hagan DFT, Chen T, Dolman H, Liu Y (2021) Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J Hydrol 595:126037

    Article  Google Scholar 

  • Linacre ET (1977) A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric Meteorol 18:409–424

    Article  Google Scholar 

  • Liu Z (2022) Evaluation of remotely sensed global evapotranspiration data from inland river basins. Hydrol Process 36:e14774. https://doi.org/10.1002/hyp.14774

  • Mahringer W (1970) Verdunstungsstudien am neusiedler See. Archiv für Meteorol, Geophysik und Bioklimatol, Serie B 18:1–20

    Article  Google Scholar 

  • Makkink G (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11:277–288

    Google Scholar 

  • Mcguinness JL, Bordne EF (1972) A comparison of lysimeter-derived potential evapotranspiration with computed values, US Department of Agriculture. https://books.google.iq/books?hl=en&lr=&id=oqYoAAAAYAAJ&oi=fnd&pg=PA1&ots=xyw9xcW_g9&sig=JTiEE51KdzzN8fl7y8oPRCljXrE&redir_esc=y#v=onepage&q&f=false

  • Mehdizadeh S, Saadatnejadgharahassanlou H, Behmanesh J (2017) Calibration of Hargreaves-Samani and Priestley-Taylor equations in estimating reference evapotranspiration in the Northwest of Iran. Arch Agron Soil Sci 63:942–955

    Article  Google Scholar 

  • Mehdizadeh S, Mohammadi B, Pham QB, Duan Z (2021) Development of boosted machine learning models for estimating daily reference evapotranspiration and comparison with empirical approaches. Water 13:3489

    Article  Google Scholar 

  • Meyer A (1926) Über einige zusammenhänge zwischen klima und boden in Europa. ETH Zurich

  • Miarnaeimi F, Azizyan G, Rashki M (2021) Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowl-Based Syst 213:106711

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Saremi S, Mirjalili S (2020) Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters. Nat-Ins Optimizers: Theor, Lit Rev Appl. Studies in Computational Intelligence, vol 811. Springer Verlag, pp 219–238. https://doi.org/10.1007/978-3-030-12127-3_13

  • Mohammadi B, Mehdizadeh S (2020) Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric Water Manag 237:106145

    Article  Google Scholar 

  • Mohammadi A, Sheikholeslam F, Mirjalili S (2023) Nature-inspired metaheuristic search algorithms for optimizing benchmark problems: inclined planes system optimization to state-of-the-art methods. Arch Comput Methods Eng 30:331–389

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Muhammad MKI, Nashwan MS, Shahid S, Ismail TB, Song YH, Chung E-S (2019) Evaluation of empirical reference evapotranspiration models using compromise programming: a case study of Peninsular Malaysia. Sustainability 11:4267

    Article  Google Scholar 

  • Muhammad MKI, Shahid S, Ismail T, Harun S, Kisi O, Yaseen ZM (2021) The development of evolutionary computing model for simulating reference evapotranspiration over Peninsular Malaysia. Theoret Appl Climatol 144:1419–1434

    Article  Google Scholar 

  • Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H (2021) ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Sci Data 13:4349–4383

    Article  Google Scholar 

  • Muslih KD (2014) Identifying the climatic conditions in Iraq by tracking down cooling events in the North Atlantic Ocean in the period 3000–0 BC. Miscellanea Geographica, Regional Studies on Development, p 18

    Google Scholar 

  • Nadimi-Shahraki MH, Zamani H, Asghari Varzaneh Z, Mirjalili S (2023) A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. Archives of Computational Methods in Engineering, 1–47

  • Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J Hydrol 303:290–306

    Article  Google Scholar 

  • Papadakis J (1965) Crop ecologic survey in relation to agricultural development of Western Pakistan. Draft report 100(3):225

    Google Scholar 

  • Penman HL (1948) . Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Math Phys Sci 193:120–145

    CAS  Google Scholar 

  • Pinos J (2022) Estimation methods to define reference evapotranspiration: a comparative perspective. Water Pract Technol 17:940–948

    Article  Google Scholar 

  • Pour SH, AbdWahab AK, Shahid S, Ismail ZB (2020) Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos Res 246:105096

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92. https://doi.org/10.1175/1520-0493(1972)1002.3.CO;2

    Article  Google Scholar 

  • Rahimpour M, Rahimzadegan M (2021) Assessment of surface energy balance algorithm for land and operational simplified surface energy balance algorithm over freshwater and saline water bodies in Urmia Lake Basin. Theoret Appl Climatol 143:1457–1472. https://doi.org/10.1007/s00704-020-03472-1

    Article  Google Scholar 

  • Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11:5508–5518

    Article  Google Scholar 

  • Ravazzani G, Corbari C, Morella S, Gianoli P, Mancini M (2012) Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins. J Irrig Drain Eng 138:592–599

    Article  Google Scholar 

  • Rohwer C (1931) Evaporation from free water surfaces, US Department of Agriculture. USDA, Washington, DC

  • Romanenko V (1961) Computation of the autumn soil moisture using a universal relationship for a large area. Proc Ukrainian Hydrometeorol Res Inst 3:12–25

    Google Scholar 

  • Roy DK, Barzegar R, Quilty J, Adamowski J (2020) Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones. J Hydrol 591:125509

    Article  Google Scholar 

  • Roy DK, Sarkar TK, Biswas SK, Datta B (2023) Generalized daily reference evapotranspiration models based on a hybrid optimization algorithm tuned fuzzy tree approach. Water Resour Manage 37:193–218

    Article  Google Scholar 

  • Salam R, Islam ARMT, Pham QB, Dehghani M, Al-Ansari N, Linh NTT (2020) The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Sci Rep 10:20171

    Article  CAS  Google Scholar 

  • Salem GSA, Kazama S, Shahid S, Dey NC (2018) Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agric Water Manag 208:33–42

    Article  Google Scholar 

  • Salman SA, Shahid S, Ismail T, Chung E-S, Al-Abadi AM (2017) Long-term trends in daily temperature extremes in Iraq. Atmos Res 198:97–107

    Article  Google Scholar 

  • Salman SA, Shahid S, Ismail T, Rahman NBA, Wang X, Chung E-S (2018) Unidirectional trends in daily rainfall extremes of Iraq. Theoret Appl Climatol 134:1165–1177

    Article  Google Scholar 

  • Salman SA, Shahid S, Sharafati A, Ahmed Salem GS, Abu Bakar A, Farooque AA, Chung E-S, Ahmed YA, Mikhail B, Yaseen ZM (2021) Projection of Agricultural Water Stress for Climate Change Scenarios: A Regional Case Study of Iraq. Agriculture 11:1288

    Article  Google Scholar 

  • Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM (2019) Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theoret Appl Climatol 135:449–462. https://doi.org/10.1007/s00704-018-2390-z

    Article  Google Scholar 

  • Schendel U (1967) Vegetationswasserverbrauch und-wasserbedarf. Habil, Kiel 137:1–11

    Google Scholar 

  • Shiru MS, Shahid S, Alias N, Chung E-S (2018) Trend analysis of droughts during crop growing seasons of Nigeria. Sustainability 10:871

    Article  Google Scholar 

  • Singer MB, Asfaw DT, Rosolem R, Cuthbert MO, Miralles DG, Macleod D, Quichimbo EA, Michaelides K (2021) Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Scientific Data 8:1–13

    Article  Google Scholar 

  • Singh V, Xu CY (1997) Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol Process 11:311–323. https://doi.org/10.1002/(SICI)1099-1085(19970315)11:33.0.CO;2-Y

    Article  Google Scholar 

  • Sobh MT, Nashwan MS, Amer N (2022) High-resolution reference evapotranspiration for arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models. Int J Climatol 42(16):10217–10237. https://doi.org/10.1002/joc.7894

    Article  Google Scholar 

  • Szász G (1973) A potenciális párolgás meghatározásának új módszere. Hidrol Közl 10:435–442

    Google Scholar 

  • Tabari H, Kisi O, Ezani A, Talaee PH (2012) SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J Hydrol 444:78–89

    Article  Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2013) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117. https://doi.org/10.1007/s00271-011-0295-z

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geograph Rev 38:55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Trabert W (1896) Neue beobachtungen über verdampfungsgeschwindigkeiten. Meteorol Z 13:261–263

    Google Scholar 

  • Trajkovic S (2007) Hargreaves versus Penman-Monteith under humid conditions. J Irrig Drain Eng 133:38–42. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(38)

    Article  Google Scholar 

  • Trajkovic S (2009) Comparison of radial basis function networks and empirical equations for converting from pan evaporation to reference evapotranspiration. Hydrol Process: An Int J 23:874–880

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Wind-adjusted Turc equation for estimating reference evapotranspiration at humid European locations. Hydrol Res 40:45–52

    Article  Google Scholar 

  • Turc L (1961) Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula. Annales agronomiques, 1961. L’Institut National de la Recherche Agronomique (INRA) Paris, France, 13–49

  • Un-Escwa B (2013) United Nations economic and social commission for western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe. Shared Tributaries of the Tigris River. Inventory of Shared Water Resources in Western Asia, Beirut

  • Wang L, Yang X, Liu Z, Zhang S, Kong J, Yang Y (2021) Estimation of evapotranspiration and its relationship with environmental factors in Jinghe River Basin. J Appl Remote Sens 15:034518–034518

    Article  Google Scholar 

  • Yaseen ZM, Naghshara S, Salih SQ, Kim S, Malik A, Ghorbani MA (2020) Lake water level modeling using newly developed hybrid data intelligence model. Theoret Appl Climatol 141:1285–1300

    Article  Google Scholar 

  • Ye L, Zahra MMA, Al-Bedyry NK, Yaseen ZM (2022) Daily scale evapotranspiration prediction over the coastal region of southwest Bangladesh: new development of artificial intelligence model. Stoch Environ Res Risk Assess 36:451–471. https://doi.org/10.1007/s00477-021-02055-4

    Article  Google Scholar 

  • Yu H, Wen X, Li B, Yang Z, Wu M, Ma Y (2020) Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Comput Electron Agric 176:105653

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Iraqi Agrometeorological Centre (IAC) / Ministry of Agriculture and the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the IAC and ERA5 climate datasets.

Funding

This research received no specific funds.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the study’s conception and design. Alaa A. Jasim did data curation, conceptualization, wrote the original draft, review, editing, visualization, and software. Shamsuddin Shahid did conceptualization, programming code, writing, review, editing, and supervision.

Corresponding authors

Correspondence to Alaa A. Jasim Al-Hasani or Shamsuddin Shahid.

Ethics declarations

Ethical approval

The article is established based on the ethics of the aimed journal.

Consent to publish

The research is technically consent to be published.

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hasani, A.A.J., Shahid, S. Development of radiation and temperature-based empirical models for accurate daily reference evapotranspiration estimation in Iraq. Stoch Environ Res Risk Assess (2024). https://doi.org/10.1007/s00477-024-02736-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00477-024-02736-w

Keywords

Navigation