Skip to main content
Log in

Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This study investigates the stratification of soil thermal properties induced by soil organic carbon (SOC) and its impacts on the parameterization of the thermal properties. Soil parameters were measured for alpine grassland stations and North China flux stations, with a total of 34 stations and 77 soil profiles. Measured data indicate that the topsoils of alpine grasslands contain high SOC contents than underlying soil layers, which leads to higher soil porosity values and lower thermal conductivity and bulk density values in the topsoils. However, this stratification is not evident at the lowland stations due to low SOC contents. Evaluations against measured data show that three thermal conductivity schemes used in land surface models severely overestimate the values for soils with high SOC content (i.e. topsoils of alpine grassland), but they are better for soils with low SOC content. A new parameterization is then developed to take the impacts of SOC into account. The new one can well estimate the soil thermal conductivity values in both low and high SOC content cases, and therefore, it is a potential candidate of thermal conductivity scheme to be used in land surface models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Vries D A. Thermal properties of soils. In: van Wijk W R, ed. Physics of Plant Environments. Amsterdam: North-Holland Publishing Company, 1963. 210–235

    Google Scholar 

  2. Johansen O. Thermal conductivity of soils. Dissertation for the Doctoral Degree. Trondheim: University of Trondheim, 1975

    Google Scholar 

  3. Farouki O T. The thermal properties of soils in cold regions. Cold Reg Sci Tech, 1981, 5: 67–75

    Article  Google Scholar 

  4. McCumber M C, Pielke R A. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part I: Soil layer. J Geophys Res, 1981, 86: 9929–9938

    Article  Google Scholar 

  5. Massman W J. Correcting errors associated with soil heat flux measurements and estimating soil thermal properties from soil temperature and heat flux plate data. Agr Forest Meteorol, 1992, 59: 249–266

    Article  Google Scholar 

  6. Côté J, Konrad J M. A generalized thermal conductivity model for soils and construction materials. Can Geotech J, 2005, 42: 443–458

    Article  Google Scholar 

  7. Lu S, Ren T S, Gong Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J, 2007, 71: 8–14

    Article  Google Scholar 

  8. Dai Y, Zeng X, Dickinson R E, et al. The Common Land Model. Bull Amer Meteor Soc, 2003, 84: 1013–1023

    Article  Google Scholar 

  9. Oleson K W, Dai Y, Bonan G B, et al. Technical description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR. Nat Center Atmos Res, 2004

  10. Ek M B, Mitchell K E, Lin Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J Geophys Res, 2003, 108: 8851

    Article  Google Scholar 

  11. Alain M B, Passerat D S, Bruno A M, et al. Apparent soil thermal diffusivity, a case study: HQPEX-Sahel experiment. Agr Forest Meteorol, 1996, 81: 201–216

    Article  Google Scholar 

  12. Peters-Lidard C D, Blackburn E, Liang X, et al. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci, 1998, 55: 1209–1224

    Article  Google Scholar 

  13. Lawrence D M, Slater A G. Incorporating organic soil into a global climate model. Clim Dyn, 2008, 30: 145–160

    Article  Google Scholar 

  14. Luo S Q, Lü S H, Zhang Y. Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau (in Chinese). Chin J Geophys, 2009, 52: 919–928

    Google Scholar 

  15. Sun S F. Biophysical and Biochemical Mechanisms and Their Parameterization in Context of Land Surface Processes (in Chinese). Beijing: China Meteorological Press, 2005. 307

    Google Scholar 

  16. Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J Meteor Soc Jpn, 2007, 85A: 229–242

    Article  Google Scholar 

  17. Yang K, Koike T, Kaihotsu I, et al. Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions. J Hydrometeorol, 2009, 10: 780–793

    Article  Google Scholar 

  18. Qin J., Liang S L, Yang K, et al. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. J Geophys Res, 2009, 114: D15103

    Article  Google Scholar 

  19. Tian X J, Xie Z H, Dai A G, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. J Geophys Res, 2009, 114: D16102

    Article  Google Scholar 

  20. Montzka C, Moradkhani H, Weihermüller L, et al. Hydraulic parameter estimation by remote-sensed top soil moisture observations with the particle filter. J Hydrol, 2011, 399: 410–421

    Article  Google Scholar 

  21. Yang K, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J Geophys Res, 2005, 110: D08101

    Article  Google Scholar 

  22. Luo S Q, Lü S H, Zhang Y, et al. Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM (in Chinese). Plateau Meteorol, 2008, 27: 259–271

    Google Scholar 

  23. van der Velde R, Su Z, Ek M, et al. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan Plateau site. Hydrol Earth Syst Sci, 2009, 13: 759–777

    Article  Google Scholar 

  24. Yang K, Chen Y Y, Qin J. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci, 2009, 13: 687–701

    Article  Google Scholar 

  25. Letts M G, Roulet N T, Comer N T, et al. Parameterization of peatland hydraulic properties for the Canadian Land Surface Scheme. Atmos Ocean, 2000, 38: 141–160

    Article  Google Scholar 

  26. Beringer J, Lynch A H, Chapin F S, et al. The representation of arctic soils in the land surface model: The importance of mosses. J Clim, 2001, 14: 3324–3335

    Article  Google Scholar 

  27. Koike T. The coordinated enhanced observing period—An initial step for integrated global water cycle observation. WMO Bull, 2004, 53: 1–8

    Google Scholar 

  28. Ma Y M, Kang S C, Zhu L P, et al. Tibetan observation and research Platform-atmosphere-land interaction over a hetogeneous landscape. Bull Amer Meteor Soc, 2008, 89: 1487–1492

    Article  Google Scholar 

  29. Wang H S, Jia G S, Fu C B, et al. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sens Environ, 2010, 114: 2248–2258

    Article  Google Scholar 

  30. Wang J, Ye B S, Zhang S Q, et al. Changing features of CO2 fluxes in alpine meadow in the upper reaches of Sule River, Qilianshan (in Chinese). J Glaciol Geocryol, 2011, 33: 646–653

    Google Scholar 

  31. Yi S H, Zhou Z Y, Ren S L, et al. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau. Environ Res Lett, 2011, in press

  32. Liu S M, Li X W, Shi S J, et al. Measurement, analysis and application of surface energy and water vapor fluxes at large scale (in Chinese). Adv Earth Sci, 2010, 25: 1113–1127

    Google Scholar 

  33. Yang J L, Zhang G L, Li D C, et al. Relationships of soil particle size distribution between sieve-pipette and laser diffraction methods relations (in Chinese). Acta Pedol Sin, 2009, 46: 772–780

    Google Scholar 

  34. Ekwue E I, Stone R J, Bhagwat D. Thermal conductivity of some compacted Trinidadian soils as affected by peat content. Biosyst Eng, 2006, 94: 461–469

    Article  Google Scholar 

  35. Dahiya R, Ingwersen J, Streck T. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Til Res, 2007, 96: 52–63

    Article  Google Scholar 

  36. Akinyemi O D, Sauer T J. Effects of heat sink compounds on contact resistance of porous media. Thermal Sci, 2007, 11: 113–124

    Article  Google Scholar 

  37. Sailor D J, Hutchinson D, Bokovoy L. Thermal property measurements for ecoroof soils common in the western US. Energ Buildings, 2008, 40: 1246–1251

    Article  Google Scholar 

  38. Global Soil Data Task, Global Soil Data Products CD-ROM (IGBPDIS) [CD-ROM], Int. Geosphere-Biosphere Programme, Data and Inf. Syst., Potsdam, 2000, Germany. Available from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tenn.; http://www.daac.ornl.gov

  39. Shangguan W, Dai Y, Liu B, et al. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 2011, doi: 10.1016/j.geoderma.2011.01.013

  40. Kersten M S. Thermal properties of soils. Univ Minnesota Eng Exp Station Bull, 1949, 52: 28 1012–1020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingYing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Yang, K., Tang, W. et al. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci. China Earth Sci. 55, 1001–1011 (2012). https://doi.org/10.1007/s11430-012-4433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4433-0

Keywords

Navigation