Skip to main content
Log in

The water content and hydrogen isotope composition of continental lithospheric mantle and mantle-derived mafic igneous rocks in eastern China

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The water contents of minerals and whole-rock in mantle-derived xenoliths from eastern China exhibit large variations and are generally lower than those from other on- and off-craton lithotectonic units. Nevertheless, the water contents of mineral and whole-rock in Junan peridotite xenoliths, which sourced from the juvenile lithospheric mantle, are generally higher than those elsewhere in eastern China. This suggests that the initial water content of juvenile lithospheric mantle is not low. There is no obvious correlation between the water contents and Mg# values of minerals in the mantle xenoliths and no occurrence of diffusion profile in pyroxene, suggesting no relationship between the low water content of mantle xenolith and the diffusion loss of water during xenolith ascent with host basaltic magmas. If the subcontinental lithospheric mantle (SCLM) base is heated by the asthenospheric mantle, the diffusion loss of water is expected to occur. On the other hand, extraction of basaltic melts from the SCLM is a more efficient mechanism to reduce the water content of xenoliths. The primary melts of Mesozoic and Cenozoic basalts in eastern China have water contents, as calculated from the water contents of phenocrysts, higher than those of normal mid-ocean ridge basalts (MORB). The Mesozoic basalts exhibit similar water contents to those of island arc basalts, whereas the Cenozoic basalts exhibit comparable water contents to oceanic island basalts and backarc basin basalts with some of them resembling island arc basalts. These observations suggest the water enrichment in the mantle source of continental basalts due to metasomatism by aqueous fluids and hydrous melts derived from dehydration and melting of deeply subducted crust. Mantle-derived megacrysts, minerals in xenoliths and phenocrysts in basalts from eastern China also exhibit largely variable hydrogen isotope compositions, indicating a large isotopic heterogeneity for the Cenozoic SCLM in eastern China. The water content that is higher than that of depleted MORB mantle and the hydrogen isotope composition that is deviated from that of depleted MORB mantle suggest that the Cenozoic continental lithospheric mantle suffered the metasomatism by hydrous melts derived from partial melting of the subducted Pacific slab below eastern China continent. The metasomatism would lead to the increase of water content in the SCLM base and then to the decrease of its viscosity. As a consequence, the SCLM base would be weakened and thus susceptible to tectonic erosion and delamination. As such, the crust-mantle interaction in oceanic subduction channel is the major cause for thinning of the craton lithosphere in North China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asimow P D, Dixon J E, Langmuir C H. 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the midatlantic ridge near the Azores. Geochem Geophy Geosy, 5: Q01E16

    Article  Google Scholar 

  • Aubaud C, Pineau F, Jambon A, Javoy M. 2004. Kinetic disequilibrium of C, He, Ar and carbon isotopes during degassing of mid-ocean ridge basalts. Earth Planet Sci Lett, 222: 391–406

    Article  Google Scholar 

  • Baptiste V, Tommasi A, Demouchy S. 2012. Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa. Lithos, 149: 31–50

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397

    Article  Google Scholar 

  • Bonadiman C, Hao Y T, Coltorti M, Dallai L, Faccini B, Huang Y, Xia Q K. 2009. Water contents of pyroxenes in intraplate lithospheric mantle. Eur J Mineral, 21: 637–647

    Article  Google Scholar 

  • Chacko T, Riciputi R, Cole R, Horita J. 1999. A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: Application to the epidote-water system. Geochim Cosmochim Acta, 63: 1–10

    Article  Google Scholar 

  • Chen H, Xia Q K, Ingrin J, Jia Z B, Feng M. 2015. Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content. Tectonophysics, 650: 113–123

    Article  Google Scholar 

  • Chopra P N, Paterson M S. 1984. The role of water in the deformation of dunite. J Geophys Res, 89: 7861–7876

    Article  Google Scholar 

  • Chu Z Y, Wu F Y, Walker R J, Rudnick R L, Pitcher L, Puchtel I S, Yang Y H, Wilde S A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China craton. J Petrol, 50: 1857–1898

    Article  Google Scholar 

  • Danyushevsky L V, Eggins S M, Falloon T J, Christie D M. 2000. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. J Petrol, 41: 1329–1364

    Article  Google Scholar 

  • Danyushevsky L V, Falloon T J, Sobolev A V, Crawford A J, Carroll M, Price R C. 1993. The H2O content of basalt glasses from Southwest Pacific back-arc basins. Earth Planet Sci Lett, 117: 347–362

    Article  Google Scholar 

  • Demouchy S, Ishikawa A, Tommasi A, Alard O, Keshav S. 2015. Characterization of hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example. Lithos, 212–215: 189–201

    Article  Google Scholar 

  • Demouchy S, Jacobsen S D, Gaillard F, Stern C R. 2006. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34: 429–432

    Article  Google Scholar 

  • Demouchy S, Mackwell S. 2003. Water diffusion in synthetic iron-free forsterite. Phys Chem Miner, 30: 486–494

    Article  Google Scholar 

  • Demouchy S, Mackwell S. 2006. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner, 33: 347–355

    Article  Google Scholar 

  • Denis C M M, Demouchy S, Shaw C S J. 2013. Evidence of dehydration in peridotites from Eifel volcanic field and estimates of the rate of magma ascent. J Volcanol Geoth Res, 258: 85–99

    Article  Google Scholar 

  • Dixon J E, Clague D A. 2001. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: Evidence for a relatively dry plume component. J Petrol, 42: 627–654

    Article  Google Scholar 

  • Dixon J E, Clague D A, Wallace P, Poreda R. 1997. Volatiles in alkalic basalts form the North Arch volcanic field, Hawaii: Extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol, 38: 911–939

    Article  Google Scholar 

  • Dixon J E, Dixon T H, Bell D R, Malservisi R. 2004. Lateral variation in upper mantle viscosity: Role of water. Earth Planet Sci Lett, 222: 451–467

    Article  Google Scholar 

  • Dixon J E, Leist L, Langmuir C, Schilling J G. 2002. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420: 385–389

    Article  Google Scholar 

  • Dixon J E, Stolper E, Delaney J R. 1988. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet Sci Lett, 90: 87–104

    Article  Google Scholar 

  • Dobson P, Skogby H, Rossman G. 1995. Water in boninite glass and coexisting orthopyroxene: Concentration and partitioning. Contrib Mineral Petrol, 118: 414–419

    Article  Google Scholar 

  • Dobson P F, Epstein S, Stolper E M. 1989. Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta, 53: 2723–2730

    Article  Google Scholar 

  • Doucet L S, Peslier A H, Ionov D A, Brandon A D, Golovin A V, Goncharov A G, Ashchepkov I V. 2014. High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochim Cosmochim Acta, 137: 159–187

    Article  Google Scholar 

  • Driesner T. 1997. The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science, 277: 791–794

    Article  Google Scholar 

  • France-Lanord C, Sheppard S M F. 1992. Hydrogen isotope composition of porewaters and interlayer water in sediments from the central western Pacific, Leg 129. Proce Ocean Drilling Program-Sci Results, 129: 295–302

    Google Scholar 

  • Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earth Planet Sci Lett, 270: 41–53

    Article  Google Scholar 

  • Gose J, Schmä dicke E, Beran A. 2009. Water in enstatite from mid-Atlantic ridge peridotite: Evidence for the water content of suboceanic mantle? Geology, 37: 543–546

    Article  Google Scholar 

  • Grant K, Ingrin J, Lorand J, Dumas P. 2007. Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol, 154: 15–34

    Article  Google Scholar 

  • Green D H, Hibberson W O, Kovacs I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

    Article  Google Scholar 

  • Griffin W L, Zhang A D, O’Reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Mantle Dynamics and Plate Interactions in East Asia. 27: 107–126

    Article  Google Scholar 

  • Grove T L, Till C B, Krawczynski M J. 2012. The Role of H2O in Subduction Zone Magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Article  Google Scholar 

  • Hao Y T, Xia Q K, Liu S C, Feng M, Zhang Y P. 2012. Recognizing juvenile and relict lithospheric mantle beneath the North China craton: Combined analysis of H2O, major and trace elements and Sr-Nd isotope compositions of clinopyroxenes. Lithos, 149: 136–145

    Article  Google Scholar 

  • Hao Y, Xia Q, Li Q, Chen H, Feng M. 2014. Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China. Chem Geol, 380: 7–19

    Article  Google Scholar 

  • Hauri E. 2002. SIMS analysis of volatiles in silicate glasses, 2: Isotopes and abundances in Hawaiian melt inclusions. Chem Geol, 183: 115–141

    Article  Google Scholar 

  • Hauri E H, Gaetani G A, Green T H. 2006. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett, 248: 715–734

    Article  Google Scholar 

  • Hawkesworth C J, Gallagher K, Hergt J M, McDermott F. 1993. Mantle and slab contributions in ARC magmas. Annu Rev Earth Planet Sci, 21: 175–204

    Article  Google Scholar 

  • Hercule S, Ingrin J. 1999. Hydrogen in diopside; diffusion, kinetics of extraction-incorporation, and solubility. Am Mineral, 84: 1577–1587

    Article  Google Scholar 

  • Hesse K T, Gose J, Stalder R, Schmä dicke E. 2015. Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep). Lithos, 232: 23–34

    Article  Google Scholar 

  • Hirose K, Kawamoto T. 1995. Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett, 133: 463–473

    Article  Google Scholar 

  • Hirschmann M M, Aubaud C, Withers A C. 2005. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet Sci Lett, 236: 167–181

    Article  Google Scholar 

  • Hirth G, Kohlstedt D. 2004. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Inside the Subduction Factory. Wiley. 83–105

  • Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93–108

    Article  Google Scholar 

  • Hochstaedter A G, Gill J B, Kusakabe M, Newman S, Pringle M, Taylor B, Fryer P. 1990. Volcanism in the Sumisu Rift. 1. Major element, volatile, and stable isotope geochemistry. Earth Planet Sci Lett, 100: 179–194

    Article  Google Scholar 

  • Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314

    Article  Google Scholar 

  • Horibe Y, Craig H. 1995. D/H fractionation in the system methane- hydrogen-water. Geochim Cosmochim Acta, 59: 5209–5217

    Article  Google Scholar 

  • Horita J, Cole D R, Polyakov V B, Driesner T. 2002. Experimental and theoretical study of pressure effects on hydrogen isotope fractionation in the system brucite-water at elevated temperatures. Geochim Cosmochim Acta, 66: 3769–3788

    Article  Google Scholar 

  • Hui H, Peslier A H, Rudnick R L, Simonetti A, Neal C R. 2015. Plume-cratonic lithosphere interaction recorded by water and other trace elements in peridotite xenoliths from the Labait volcano, Tanzania. Geochem Geophy Geosy, 16: 1687–1710

    Article  Google Scholar 

  • Humphreys E, Hessler E, Dueker K, Farmer G L, Erslev E, Atwater T. 2003. How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States. Int Geol Rev, 45: 575–595

    Article  Google Scholar 

  • Ingrin J, Hercule S, Charton T. 1995. Diffusion of hydrogen in diopside: Results of dehydration experiments. J Geophys Res, 100: 15489–15499

    Article  Google Scholar 

  • Inoue T. 1994. Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys Earth Planet Inter, 85: 237–263

    Article  Google Scholar 

  • Jambon A. 1994. Earth degassing and large-scale geochemical cycling of volatile elements. Rev Mineral Geochem, 30: 479–517

    Google Scholar 

  • Jamtveit B, Brooker R, Brooks K, Larsen L M, Pedersen T. 2001. The water content of olivines from the North Atlantic Volcanic Province. Earth Planet Sci Lett, 186: 401–415

    Article  Google Scholar 

  • Ji S, Wang Z, Wirth R. 2001. Bulk flow strength of forsterite-enstatite composites as a function of forsterite content. Tectonophysics, 341: 69–93

    Article  Google Scholar 

  • Karato S I, Wu P. 1993. Rheology of the upper mantle: A synthesis. Science, 260: 771–778

    Article  Google Scholar 

  • Kawamoto T, Holloway J R. 1997. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascal. Science, 276: 240–243

    Article  Google Scholar 

  • Kawamoto T. 2004. Hydrous phase stability and partial melt chemistry of H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter, 143-144: 387–395

    Article  Google Scholar 

  • Kent A J R, Rossman G R. 2002. Hydrogen, lithium, and boron in mantle- derived olivine: The role of coupled substitutions. Am Mineral, 87: 1432–1436

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett, 148: 193–205

    Article  Google Scholar 

  • Kohlstedt D L, Evans B, Mackwell S J. 1995. Strength of the lithosphere: Constraints imposed by laboratory experiments. J Geophys Res, 100: 17587–17602

    Article  Google Scholar 

  • Kovács I, Green D H, Rosenthal A, Hermann J, O’neill H S C, Hibberson W O, Udvardi B. 2012. An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol, 53: 2067–2093

    Article  Google Scholar 

  • Kurosawa M, Yurimoto H, Sueno S. 1997. Patterns in the hydrogen and trace element compositions of mantle olivines. Phys Chem Miner, 24: 385–395

    Article  Google Scholar 

  • Lécuyer C, O’Neil J R. 1994. Stable isotope compositions of fluid inclusions in biogenic carbonates. Geochim Cosmochim Acta, 58: 353–363

    Article  Google Scholar 

  • Lee C T, Yin Q, Rudnick R L, Jacobsen S B. 2001. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature, 411: 69–73

    Article  Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Iacono-Marziano G, Beny J M. 2011. The H2O solubility of alkali basaltic melts: An experimental study. Contrib Mineral Petrol, 162: 133–151

    Article  Google Scholar 

  • Li P, Xia Q K, Deloule E, Chen H, Gu X Y, Feng M. 2015. Temporal variation of H2O content in the lithospheric mantle beneath the eastern North China craton: Implications for the destruction of cratons. Gondwana Res, 28: 276–287

    Article  Google Scholar 

  • Li Z X A, Lee C T A, Peslier A H, Lenardic A, Mackwell S J. 2008. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res, 113: B09210

    Google Scholar 

  • Liu C Z, Liu Z C, Wu F Y, Chu Z Y. 2012a. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: Geochemical and Re-Os isotopic results from Ningyuan mantle xenoliths. Chem Geol, 291: 186–198

    Article  Google Scholar 

  • Liu C Z, Wu F Y, Sun J, Chu Z Y, Qiu Z L. 2012b. The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China. Lithos, 150: 171–187

    Article  Google Scholar 

  • Liu J, Xia Q K, Deloule E, Ingrin J, Chen H, Feng M. 2015. Water Content and Oxygen Isotopic Composition of Alkali Basalts from the Taihang Mountains, China: Recycled Oceanic Components in the Mantle Source. J Petrol, 56: 681–702

    Article  Google Scholar 

  • Liu S, Xia Q. 2014. Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains: Implications for the destruction of the North China Craton. Chin Sci Bull, 59: 1362–1365

    Article  Google Scholar 

  • Mackwell S J, Kohlstedt D L. 1990. Diffusion of hydrogen in olivine: Implications for water in the mantle. J Geophys Res, 95: 5079–5088

    Article  Google Scholar 

  • McCulloch M T, Gamble J A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 102: 358–374

    Article  Google Scholar 

  • Mei S, Kohlstedt D L. 2000. Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. J Geophys Res, 105: 21471–21481

    Article  Google Scholar 

  • Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc Am Spec Pap, 76: 71–78

    Article  Google Scholar 

  • Michael P. 1995. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth Planet Sci Lett, 131: 301–320

    Article  Google Scholar 

  • Michael P J. 1988. The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism. Geochim Cosmochim Acta, 52: 555–566

    Article  Google Scholar 

  • Mosenfelder J L, Sharp T G, Asimow P D, Rossman G R. 2006. Hydrogen Incorporation in Natural Mantle Olivines. Earth’s Deep Water Cycle. 45–56

  • Nichols A R L, Carroll M R, Höskuldsson Á. 2002. Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet Sci Lett, 202: 77–87

    Article  Google Scholar 

  • Peslier A H, Bizimis M. 2015. Water in Hawaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere. Geochem Geophy Geosy, 16: 1211–1232

    Article  Google Scholar 

  • Peslier A H, Bizimis M, Matney M. 2015. Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, H diffusion and magma ascent rates. Geochim Cosmochim Acta, 154: 98–117

    Article  Google Scholar 

  • Peslier A H, Luhr J F. 2006. Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett, 242: 302–319

    Article  Google Scholar 

  • Peslier A H, Luhr J F, Post J. 2002. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett, 201: 69–86

    Article  Google Scholar 

  • Peslier A H, Woodland A B, Bell D R, Lazarov M. 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81

    Article  Google Scholar 

  • Peslier A H, Woodland A B, Wolff J A. 2008. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Acta, 72: 2711–2722

    Article  Google Scholar 

  • Pineau F, Shilobreeva S, Kadik A, Javoy M. 1998. Water solubility and D/H fractionation in the system basaltic andesite-H2O at 1250°C and between 0.5 and 3 kbars. Chem Geol, 147: 173–184

    Article  Google Scholar 

  • Princivalle F, De Min A, Lenaz D, Scarbolo M, Zanetti A. 2014. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188: 3–14

    Article  Google Scholar 

  • Ringwood A E. 1990. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol, 82: 187–207

    Google Scholar 

  • Riter J C A, Smith D. 1996. Xenolith constraints on the thermal history of the mantle below the Colorado Plateau. Geology, 24: 267–270

    Article  Google Scholar 

  • Rüpke L H, Morgan J P, Hort M, Connolly J A D. 2002. Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology, 30: 1035–1038

    Article  Google Scholar 

  • Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 419: 451–455

    Article  Google Scholar 

  • Sakuyama T, Tian W, Kimura J I, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H, Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chem Geol, 359: 32–48

    Article  Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophy Geosy, 5: Q05B07

    Article  Google Scholar 

  • Schmädicke E, Gose J, Witt-Eickschen G, Brätz H. 2013. Olivine from spinel peridotite xenoliths: Hydroxyl incorporation and mineral composition. Am Mineral, 98: 1870–1880

    Article  Google Scholar 

  • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379

    Article  Google Scholar 

  • Seaman C, Sherman S B, Garcia M O, Baker M B, Balta B, Stolper E. 2004. Volatiles in glasses from the HSDP2 drill core. Geochem Geophy Geosy, 5: Q09G16

    Article  Google Scholar 

  • Shaw A M, Hauri E H, Behn M D, Hilton D R, Macpherson C G, Sinton J M. 2012. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nat Geosci, 5: 224–228

    Article  Google Scholar 

  • Shaw A M, Hauri E H, Fischer T P, Hilton D R, Kelley K A. 2008. Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth Planet Sci Lett, 275: 138–145

    Article  Google Scholar 

  • Shilobreeva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochim Cosmochim Acta, 75: 2237–2255

    Article  Google Scholar 

  • Simons K, Dixon J, Schilling J G, Kingsley R, Poreda R. 2002. Volatiles in basaltic glasses from the Easter-Salas y Gomez Seamount Chain and Easter Microplate: Implications for geochemical cycling of volatile elements. Geochem Geophy Geosy, 3: 1039

    Article  Google Scholar 

  • Sisson T W, Layne G D. 1993. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett, 117: 619–635

    Article  Google Scholar 

  • Smith D. 2000. Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. J Geophys Res, 105: 16769–16781

    Article  Google Scholar 

  • Sobolev A V, Chaussidon M. 1996. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett, 137: 45–55

    Article  Google Scholar 

  • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170–171: 208–223

    Article  Google Scholar 

  • Stalder R, Behrens H. 2006. D/H exchange in pure and Cr-doped enstatite: Implications for hydrogen diffusivity. Phys Chem Miner, 33: 601–611

    Article  Google Scholar 

  • Stalder R, Purwin H, Skogby H. 2007. Influence of Fe on hydrogen diffusivity in orthopyroxene. Eur J Mineral, 19: 899–903

    Article  Google Scholar 

  • Stalder R, Skogby H. 2003. Hydrogen diffusion in natural and synthetic orthopyroxene. Phys Chem Miner, 30: 12–19

    Article  Google Scholar 

  • Stalder R, Skogby H. 2007. Dehydration mechanisms in synthetic Fe-bearing enstatite. Eur J Mineral, 19: 201–216

    Article  Google Scholar 

  • Stern R J. 2002. Subduction Zones. Rev Geophys, 40: 3-1-3-38

  • Stolper E, Newman S. 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett, 121: 293–325

    Article  Google Scholar 

  • Sundvall R, Skogby H, Stalder R. 2009. Hydrogen diffusion in synthetic Fe-free diopside. Eur J Mineral, 21: 963–970

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101: 435–452

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Nakamura E, Ying J F. 2011. Multistage melt/fluidperidotite interactions in the refertilized lithospheric mantle beneath the North China craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol, 161: 845–861

    Article  Google Scholar 

  • Taran Y A, Pokrovsky B G, Volynets O N. 1997. Hydrogen isotopes in hornblendes and biotites from Quaternary volcanic rocks of the Kamchatka-Kurile arc. Geochem J, 31: 203–221

    Article  Google Scholar 

  • Taylor B E. 1986. Magmatic volatiles; isotopic variation of C, H, and S. Rev Mineral Geochem, 16: 185–225

    Google Scholar 

  • Tenner T, Hirschmann M, Withers A, Ardia P. 2012. H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: Consequences for dehydration melting above the transition zone. Contrib Mineral Petrol, 163: 297–316

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Withers A C, Hervig R L. 2009. Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol, 262: 42–56

    Article  Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Google Scholar 

  • Wade J A, Plank T, Hauri E H, Kelley K A, Roggensack K, Zimmer M. 2008. Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts. Geology, 36: 799–802

    Article  Google Scholar 

  • Wallace P J, Anderso A T. 1998. Effects of eruption and lava drainback on the H2O contents of basaltic magmas at Kilauea Volcano. B Volcanol, 59: 327–344

    Article  Google Scholar 

  • Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res, 140: 217–240

    Article  Google Scholar 

  • Walowski K J, Wallace P J, Hauri E H, Wada I, Clynne M A. 2015. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci, 8: 404–408

    Article  Google Scholar 

  • Wang Q, Bagdassarov N, Xia Q K, Zhu B. 2014. Water contents and electrical conductivity of peridotite xenoliths from the North China craton: Implications for water distribution in the upper mantle. Lithos, 189: 105–126

    Article  Google Scholar 

  • Wang R, Zhang B. 2011. Water in peridotite xenoliths from South China. Sci China Earth Sci, 54: 1511–1522

    Article  Google Scholar 

  • Wang Y, Zhao Z F, Zheng Y F, Zhang J J. 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 125: 940–955

    Article  Google Scholar 

  • Warren J M, Hauri E H. 2014. Pyroxenes as tracers of mantle water variations. J Geophys Res, 119: 1851–1881

    Article  Google Scholar 

  • West M, Ni J, Baldridge W S, Wilson D, Aster R, Gao W, Grand S. 2004. Crust and upper mantle shear wave structure of the southwest United States: Implications for rifting and support for high elevation. J Geophys Res, 109: B03309

    Google Scholar 

  • Woods S C, Mackwell S, Dyar D. 2000. Hydrogen in diopside: Diffusion profiles. Am Mineral, 85: 480–487

    Article  Google Scholar 

  • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72

    Article  Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  • Xia Q K, Chen D G, Deloule E, Zhi X C. 1999a. Hydrogen isotope compositions of mantle-derived amphibole megacrysts from Qilin, Guangdong and its tectonic significance. Chin Sci Bull, 44: 474–477

    Article  Google Scholar 

  • Xia Q K, Chen D G, Deloule E, Zhi X C. 1999b. Hydrogen isotope composition of mantle-derived mica megacryst from ion microprobe analysis. Sci China Ser D-Earth Sci, 42: 392–398

    Google Scholar 

  • Xia Q K, Chen D G, Guo L H, Zhi X C, Wu Y B, Cheng H. 2000. Water in Nüshan and Panshishan peridotite xenoliths: FTIR studies (in Chinese). Sci Geol Sin, 35: 219–225

    Google Scholar 

  • Xia Q K, Pan Y J, Chen D G, Deloule E, Zhi X C, Cheng H, Wu Y B. 2001a. Hydrogen isotopic compositions of mantle-derived clinopyroxene megacrysts from Hannuoba by ion microprobe: Micro-scale heterogeneity (in Chinese with English abstract). Acta Petrol Sinica, 17: 7–10

    Google Scholar 

  • Xia Q, Chen D G, Etienne D, Zhi X C, Cheng H, Wu Y B. 2001b. Anomalously high δD and micro-scale hydrogen isotope heterogeneities in the mantle: Ion microprobe analysis of amiboles from peridotite xenoliths at Nushan, eastern China. Chin Sci Bull, 46: 505–509

    Article  Google Scholar 

  • Xia Q K, Dallai L, Deloule E. 2004. Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China. Chem Geol, 209: 137–151

    Article  Google Scholar 

  • Xia Q K, Xing L B, Feng M, Liu S C, Yang X Z, Hao Y T. 2010a. Water content and element geochemistry of peridotite xenoliths hosted by Early-Jurassic basalt in Ningyuan, Hunan Province (in Chinese with English abstract). Acta Petrol Mineral, 29: 113–124

    Google Scholar 

  • Xia Q K, Hao Y T, Li P, Deloule E, Coltorti M, Dallai L, Yang X Z, Feng M. 2010b. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China craton. J Geophys Res, 115: B07207

    Article  Google Scholar 

  • Xia Q K, Hao Y T, Liu S C, Gu X Y, Feng M. 2013a. Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China craton: Peridotite xenolith constraints. Gondwana Res, 23: 108–118

    Article  Google Scholar 

  • Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013b. High water content in Mesozoic primitive basalts of the North China craton and implications for the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97

    Article  Google Scholar 

  • Xiao Y, Zhang H F, Fan W M, Ying J F, Zhang J, Zhao X M, Su B X. 2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117: 229–246

    Article  Google Scholar 

  • Xu X, O’Reilly S Y, Zhou X, Griffin W L. 1996. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 38: 41–62

    Article  Google Scholar 

  • Xu X S, O’Reilly S Y, Griffin W L, Zhou X M. 2000. Genesis of Young Lithospheric Mantle in Southeastern China: An LAM-ICPMS Trace Element Study. J Petrol, 41: 111–148

    Article  Google Scholar 

  • Xu Y G. 2014. Recycled oceanic crust in the source of 90–40 Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49–67

    Article  Google Scholar 

  • Xu Y G, Sun M, Yan W, Liu Y, Huang X L, Chen X M. 2002. Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci, 20: 937–954

    Article  Google Scholar 

  • Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184

    Article  Google Scholar 

  • Xu Z, Zhao Z F, Zheng Y F. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146–147: 202–217

    Article  Google Scholar 

  • Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302

    Article  Google Scholar 

  • Yang G C, Yang X Z, Hao Y T, Xia Q K. 2012. Water content difference between continental lower crust and lithospheric mantle: Granulite and peridotite xenoliths hosted in basalts from Junan, Shandong Province (in Chinese with English abstract). Acta Petrol Mineral, 31: 691–700

    Google Scholar 

  • Yang X Z, Xia Q K, Deloule E, Dallai L, Fan Q C, Feng M. 2008. Water in minerals of the continental lithospheric mantle and overlying lower crust: A comparative study of peridotite and granulite xenoliths from the North China craton. Chem Geol, 256: 33–45

    Article  Google Scholar 

  • Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638

    Article  Google Scholar 

  • Yu J H, O’Reilly S Y, Griffin W L, Xu X, Zhang M, Zhou X. 2003. The thermal state and composition of the lithospheric mantle beneath the Leizhou Peninsula, South China. J Volcanol Geoth Res, 122: 165–189

    Article  Google Scholar 

  • Yu J H, O’Reilly S Y, Zhang M, Griffin W L, Xu X. 2006. Roles of Melting and Metasomatism in the Formation of the Lithospheric Mantle beneath the Leizhou Peninsula, South China. J Petrol, 47: 355–383

    Article  Google Scholar 

  • Yu Y, Xu X S, Griffin W L, O’Reilly S Y, Xia Q K. 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 126: 182–197

    Article  Google Scholar 

  • Zhang H F, Sun M, Lu F X, Zhou X H, Zhou M F, Liu Y S, Zhang G-H. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J, 35: 315–331

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241–253

    Article  Google Scholar 

  • Zhang H F, Goldstein S, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293

    Article  Google Scholar 

  • Zhang L G, Chen Z S, Liu J X, Yu G X. 1995. Hydrogen isotope dynamic fractionation in water-rock exchange system (in Chinese). B Mineral Petrol Geochem, 15: 3–6

    Google Scholar 

  • Zhang J, Zhang H F, Kita N, Shimoda G, Morishita Y, Ying J F, Tang Y J. 2011. Secular evolution of the lithospheric mantle beneath the eastern North China craton: Evidence from peridotitic xenoliths from Late Cretaceous mafic rocks in the Jiaodong region, east-central China. Int Geol Rev, 53: 182–211

    Article  Google Scholar 

  • Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326

    Article  Google Scholar 

  • Zhao Q C, Xia Q K, Liu S C, Chen H, Feng M. 2015. Water content and element geochemistry of peridotite xenoliths hosted by Cenozoic basalt in Longgang and Wangqing, Jilin Province (in Chinese with English abstract). Geosci Front, 22: 360

    Google Scholar 

  • Zheng J, Griffin W L, O’Reilly S Y, Yang J S, Zhang R Y. 2006. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 34: 705–708

    Article  Google Scholar 

  • Zheng J, O’Reilly S Y, Griffin W L, Zhang M, Lu F, Liu G. 2004. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 74: 41–65

    Article  Google Scholar 

  • Zheng J P, Lee C T A, Lu J G, Zhao J H, Wu Y B, Xia B, Li X Y, Zhang J F, Liu Y S. 2015. Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents. Earth Planet Sci Lett, 409: 225–231

    Article  Google Scholar 

  • Zheng J P, O’Reilly S Y, Griffin W L, Lu F X, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66

    Article  Google Scholar 

  • Zheng J P, Sun M, Zhou M F, Robinson P. 2005. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China craton. Geochim Cosmochim Acta, 69: 3401–3418

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Article  Google Scholar 

  • Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 54: 3347–3353

    Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng Y F, Xiao W J, Zhao G C. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206

    Article  Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction- zone fluids. Earth, Planets Space, 66: 93

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zhou X, Armstrong R L. 1982. Cenozoic volcanic rocks of eastern China— Secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet Sci Lett, 58: 301–329

    Article  Google Scholar 

  • Zhou X, Zhu B, Liu R, Chen W. 1988. Cenozoic Basaltic Rocks in Eastern China. Heidelberg: Springer. 311–330

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Article  Google Scholar 

  • Zou H B, Zindler A, Xu X S, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem Geol, 171: 33–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Gong, B. & Zhao, Z. The water content and hydrogen isotope composition of continental lithospheric mantle and mantle-derived mafic igneous rocks in eastern China. Sci. China Earth Sci. 59, 910–926 (2016). https://doi.org/10.1007/s11430-015-5247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5247-7

Keywords

Navigation