Skip to main content
Log in

Composition and evolution of the lithospheric mantle beneath the interior of the South China Block: insights from trace elements and water contents of peridotite xenoliths

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Major and trace elements and water contents were analyzed in 16 peridotite xenoliths embedded by the Cenozoic basalts in Pingnan (southeastern Guangxi Province), to constrain the chemical composition and evolution of the lithospheric mantle located in the central part of the South China Block (SCB). The peridotites are mainly moderately refractory harzburgites and lherzolites (Mg#-Ol = 90.3–91.7) and minor fertile lherzolites (Mg#-Ol = 88.9–89.9). Clinopyroxenes in the peridotites show LREE-depleted pattern, and commonly exhibit negative anomalies in Nb and Ti, suggesting the peridotites probably represent residues after 1–10% of partial melting without significant mantle metasomatism. Water contents range from 146 to 237 ppm wt. H2O in clinopyroxene, and from 65 to 112 ppm wt. H2O, in orthopyroxene but are below detection limit (2 ppm wt. H2O) in olivine. Calculated bulk water contents, based on the mineral modes and partition coefficient, range from 14 to 83 ppm wt. H2O (average 59 ppm wt. H2O). There is a correlation between melting indices (such as Mg#-Ol, Ybn in clinopyroxene) and water contents in clinopyroxene and orthopyroxene, but no correlation is observed between the whole-rock water contents and the redox state (Fe3+/∑Fe ratios in spinel), suggesting that water contents in the peridotites are mainly controlled by the degree of partial melting rather than by oxygen fugacity. The lithospheric mantle beneath the interior of the SCB may not be compositionally stratified; fertile and moderately refractory mantle coexist at the similar depths. Geochemical data and water contents of the studied peridotites are similar to the proposed MORB source and indicate that the ancient refractory lithospheric mantle was irregularly eroded or reacted by the upwelling asthenosphere, and eventually replaced by juvenile fertile accreted mantle through the cooling of the asthenosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Asimow PD, Langmuir CH (2003) The importance of water to oceanic mantle melting regimes. Nature 421:815–820

    Google Scholar 

  • Asimow PD, Dixon JE, Langmuir CH (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosyst 5:241–262

    Google Scholar 

  • Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett 31:20

    Google Scholar 

  • Aubaud C, Withers AC, Hirschmann MM, Guan Y, Leshin LA, Mackwell S, Bell D (2007) Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral 92:811–828

    Google Scholar 

  • Bedini RM, Bodinier JL (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African rift. Geochim Cosmochim Acta 63(22):3883–3900

    Google Scholar 

  • Bell DR (2003) Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res Solid Earth 108:998–1003

    Google Scholar 

  • Bell DR, Rossman GR (1992a) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Google Scholar 

  • Bell DR, Rossman GR (1992b) The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib Miner Pet 111:161–178

    Google Scholar 

  • Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Mineral 80:465–474

    Google Scholar 

  • Bell DR, Rossman GR, Moore RO (2004) Abundance and partitioning of OH in a high-pressure magmatic system megacrysts from the Monastery Kimberlite, South Africa. J Petrol 45:1539–1564

    Google Scholar 

  • Beran A, Putnis A (1983) A model of the OH position in olivine, derived from infrared-spectroscopy investigations. Phys Chem Miner 9:57–60

    Google Scholar 

  • Beran A, Zemann J (1969) Über OH-Gruppen in Olivin. Österreich Akademie der Wissenschaften 3:73–74

    Google Scholar 

  • Bonadiman C, Hao YT, Coltorti M, Dallai L, Faccini B, Huang Y, Xia QK (2009) Water contents of pyroxenes in intraplate lithospheric mantle. Eur J Mineral 21:637–647

    Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Google Scholar 

  • Boyd FR (1997) Origin of peridotite xenoliths: major element consideration. In: Ranalli G, Ricci LF, Ricci CA, Tromsdorff T (eds) High pressure and high temperature research on lithosphere and mantle materials. University of Siena, Siena, pp 89–106

    Google Scholar 

  • Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In: Mysen BO (ed) Magmatic processes: physicochemical principles, vol 1. The Geochemical Society Special Publications, London, pp 13–24

    Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II: new thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Danyushevsky LV, Eggins SM, Falloon TJ, Christie DM (2000) H2O abundance in depleted to moderately enriched Mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J Petrol 41:1329–1364

    Google Scholar 

  • Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34:429–432

    Google Scholar 

  • Denis CMM, Demouchy S, Shaw CSJ (2013) Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent. J Volcanol Geoth Res 258:85–99

    Google Scholar 

  • Denis CMM, Alard O, Demouchy S (2015) Water content and hydrogen behaviour during metasomatism in the uppermost mantle beneath Ray Pic volcano (Massif Central, France). Lithos 236–237:256–274

    Google Scholar 

  • Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkalic basalts form the North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol 38:911–939

    Google Scholar 

  • Dixon JE, Leist L, Langmuir C, Schilling JG (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:385–389

    Google Scholar 

  • Dixon JE, Dixon TH, Bell DR, Malservisi R (2004) Lateral variation in upper mantle viscosity: role of water. Earth Planet Sci Lett 222:451–467

    Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction related igneous rocks. Nature 365:332–334

    Google Scholar 

  • Gose J, Schmadicke E, Beran A (2009) Water in enstatite from Mid-Atlantic Ridge peridotite: evidence for the water content of suboceanic mantle? Geology 37:543–546

    Google Scholar 

  • Grant K, Ingrin J, Lorand JP, Dumas P (2007) Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol 154:15–34

    Google Scholar 

  • Green DH (2015) Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys Chem Miner 42:95–122

    Google Scholar 

  • Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998a) Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower MFJ, Chung S-L, Lo C-H, Lee T-Y (eds) Mantle dynamics and plate interactions in East Asia, vol 27. American Geophysical Union, Washington, pp 107–126

    Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG, Gaul O, Ionov DA (1998b) Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications. Am Geophys Union 26:1–26

    Google Scholar 

  • Griffin WL, Fisher NI, Friedman J, Ryan CG, O’Reilly SY (1999a) Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. J Petrol 40:679–704

    Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG (1999b) The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Bertka C, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation. The Geochemical Society, Stony Brook, pp 13–45

    Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439

    Google Scholar 

  • Hao YT, Xia QK, Liu SC, Feng M, Zhang YP (2012) Recognizing juvenile and relict lithospheric mantle beneath the North China Craton: combined analysis of H2O, major and trace elements and Sr–Nd isotope compositions of clinopyroxenes. Lithos 149:136–145

    Google Scholar 

  • Hao YT, Xia QK, Li QW, Chen H, Feng M (2014) Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China. Chem Geol 380:7–19

    Google Scholar 

  • Hao YT, Xia QK, Tian ZZ, Liu J (2016a) Mantle metasomatism did not modify the initial H2O content in peridotite xenoliths from the Tianchang basalts of eastern China. Lithos 260:315–327

    Google Scholar 

  • Hao YT, Xia QK, Jia ZB, Zhao QC, Li P, Feng M, Liu SC (2016b) Regional heterogeneity in the water content of the Cenozoic lithospheric mantle of Eastern China. J Geophys Res Solid Earth 121:517–537

    Google Scholar 

  • Hauri E, Gaetani G, Green T (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734

    Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Google Scholar 

  • Herzberg CT (1993) Lithosphere peridotites of the Kaapvaal craton. Earth Planet Sci Lett 120:13–29

    Google Scholar 

  • Hesse KT, Gose J, Stalder R, Schmädicke E (2015) Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep). Lithos 232:23–34

    Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect on H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Google Scholar 

  • Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653

    Google Scholar 

  • Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet Inter 176:54–68

    Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Google Scholar 

  • Huang X, Xu Y (2010) Thermal state and structure of the lithosphere beneath eastern China: a synthesis on basalt–borne xenoliths. J Earth Sci China 21:711–730

    Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12:543–570

    Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: anion microprobe study of diopsides in abyssal peridotites. J Geophys Res Solid Earth 95:2661–2678

    Google Scholar 

  • Koga K, Hauri E, Hirschmann M, Bell D (2003) Hydrogen concentration analyses using sims and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst 4:211–223

    Google Scholar 

  • Kong H, Huang DZ, Jin ZM (2000) Geochemical characteristics of alkaline basalts in Pingnan county, Guangxi. Geotectonica et Metallogenia 24:342–349

    Google Scholar 

  • Kovács I, Hermann J, O’ Neill HSC, Gerald JF, Sambridge M, Horváth G (2008) Quantitative absorbance spectroscopy with unpolarized light: part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Mineral 93:765–778

    Google Scholar 

  • Li ZA, Lee CA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res Solid Earth 113:B09210

    Google Scholar 

  • Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH (2009) Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambr Res 174:117–128

    Google Scholar 

  • Li XY, Zheng JP, Sun M, Pan SK, Wang W, Xia QK (2014) The Cenozoic lithospheric mantle beneath the interior of South China Block: constraints from mantle xenoliths in Guangxi Province. Lithos 210–211:14–26

    Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Google Scholar 

  • Liu JG, Rudnick RL, Walker RJ, Gao S, Wu FY, Piccoli PM, Yuan HL, Yuan HL, Xu YG (2011) Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochim Cosmochim Acta 75:3881–3902

    Google Scholar 

  • Liu CZ, Wu F, Sun J, Chu Z, Qiu Z (2012a) The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China. Lithos 150:171–187

    Google Scholar 

  • Liu CZ, Liu ZC, Wu FY, Chu ZY (2012b) Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths. Chem Geol 291:186–198

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Mercier JCC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Michael PJ (1988) The concentration, behavior and storage of H2O in the suboceanic upper mantle-implications for mantle metasomatism. Geochim Cosmochim Acta 52:555–566

    Google Scholar 

  • Nichols ARL, Carroll MR, Höskuldsson Á (2002) Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet Sci Lett 202:77–87

    Google Scholar 

  • Niu YL (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petr 130:240–255

    Google Scholar 

  • O’Reilly SY, Griffin WL, Djomani YHP, Morgan P (2001) Are lithospheres forever? tracking changes in subcontinental lithospheric mantle through time. GSA Today 11:4–10

    Google Scholar 

  • Pan SK, Zheng JP, Chu L, Griffin W L (2013) Coexistence of the moderately refractory and fertile mantle beneath the eastern central asian orogenic belt. Gondwana Res 23:176–189

    Google Scholar 

  • Peslier AH, Bizimis M (2015) Water in Hawaiian peridotite minerals: a case for a dry metasomatized oceanic mantle lithosphere. Geochem Geophys Geosyst 16:1211–1232

    Google Scholar 

  • Peslier AH, Luhr JF (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242:302–319

    Google Scholar 

  • Peslier AH, Luhr JF, Post J (2002) Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett 201:69–86

    Google Scholar 

  • Peslier AH, Woodland AB, Wolff JA (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Acta 72:2711–2722

    Google Scholar 

  • Qiu YM, Gao S, McNaughton NJ, Groves DI, Ling W (2000) First evidence of> 3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28:11–14

    Google Scholar 

  • Reisberg L, Zhi XC, Lornand JP, Wagner C, Peng ZC, Zimmermann C (2005) Re–Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effect of melt percolation. Earth Planet Sci Lett 239:286–308

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapor under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Google Scholar 

  • Seaman C, Sherman SB, Garcia MO, Baker MB, Balta B, Stolper E (2004) Volatiles in glasses from the HSDP2 drill core. Geochem Geophys Geosyst 5:983–987

    Google Scholar 

  • Simons K, Dixon J, Schilling JG, Kingsley R, Poreda R (2002) Volatiles in basaltic glasses from the Easter-Salas y Gomez Seamount Chain and Easter Microplate: implications for geochemical cycling of volatile elements. Geochem Geophys Geosyst 3:1–29

    Google Scholar 

  • Skogby H, Rossman GR (1989) OH in pyroxene: an experimental study of incorporation mechanisms and stability. Am Mineral 74:1059–1069

    Google Scholar 

  • Skogby H, Bell DR, Rossman GR (1990) Hydroxide in pyroxene: variations in the natural environment. Am Mineral 75:764–774

    Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Google Scholar 

  • Sun J, Liu CZ, Wu FY, Yang YH, Chu ZY (2012) Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton: trace-element and Sr-isotope constraints. Chem Geol 328:123–136

    Google Scholar 

  • Tang YJ, Zhang HF, Ying JF, Zhang J, Liu XM (2008) Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 101:435–452

    Google Scholar 

  • Tang YJ, Zhang HF, Ying JF, Su BX, Chu ZY, Xiao Y, Zhao XM (2012) Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization. Gondwana Res 23:130–140

    Google Scholar 

  • Tenner TJ, Hirschmann MM, Withers AC, Hervig RL (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol 262:42–56

    Google Scholar 

  • Van der Lee S, Regenauer-Lieb K, Yuen DA (2008) The role of water in connecting past and future episodes of subduction. Earth Planet Sci Lett 273:15–27

    Google Scholar 

  • Wallace PJ (2002) Volatiles in submarine basaltic glasses from the northern kerguelen plateau (ODP site 1140): implications for source region compositions, magmatic processes, and plateau subsidence. J Petrol 43:1311–1326

    Google Scholar 

  • Warren JM, Hauri EH (2014) Pyroxenes as tracers of mantle water variations. J Geophys Res Solid Earth 119:1851–1881

    Google Scholar 

  • Wells P (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Withers AC, Hirschman MM (2007) H2O storage capacity of MgSiO3, clinoenstatite at 8–13 GPa, 1100–1400 °C. Contrib Mineral Petrol 154:663–674

    Google Scholar 

  • Withers AC, Hirschman MM (2008) Influence of temperature, composition, silica activity and oxygen fugacity on the H2O storage capacity of olivine at 8GPa. Contrib Mineral Petrol 156:595–605

    Google Scholar 

  • Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J (2007) Erratum to: “volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle”. Earth Planet Sci Lett 253:932–951

    Google Scholar 

  • Xia QK, Hao YT (2013) The distribution of water in the continental lithospheric mantle and its implications for the stability of continents. Chin Sci Bull 58:3879–3889

    Google Scholar 

  • Xia QK, Hao YT, Li P, Deloule E, Coltorti M, Dallai L, Yang XZ, Feng M (2010) Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res Solid Earth 115:B07207

    Google Scholar 

  • Xia QK, Liu J, Kovacs I, Hao YT, Li P, Yang XZ, Chen H, Sheng YM (2017) Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. Natl Sci Rev 0:1–20

    Google Scholar 

  • Xiao Y, Zhang HF, Fan WM, Ying JF, Zhang J, Zhao XM, Su BX (2010) Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 117:229–246

    Google Scholar 

  • Xu XS (2003) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188

    Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM, Huang XL (1998) The nature of the Cenozoic lithosphere at Nushan, Eastern China. In: Flower MFJ, Chung S-L, Lo C-H, Lee T-Y (eds) Mantle dynamics and plate interactions in East Asia, vol 27. American Geophysical Union, Washington, pp 167–195

    Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2000) Genesis of young lithospheric mantle in Southeastern China: a LAM–ICPMS trace element study. J Petrol 41:111–148

    Google Scholar 

  • Xu YG, Yan W, Sun M, Liu Y, He ZC, Shi LB (2001) Polybaric partial melting in the continental mantle: evidence from mantle xenoliths from Qilin Guangdong Province. Chin Sci Bull 46:1732–1736

    Google Scholar 

  • Xu YG, Sun M, Yan W, Liu Y, Huang XL, Chen XM (2002) Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci 20:937–954

    Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Wang X, Pearson NJ, He Z (2007) The crust of Cathaysia: age, assembly and reworking of two terranes. Precambr Res 158:51–78

    Google Scholar 

  • Xu XS, Griffin WL, O’Reilly SY, Pearson NJ, Geng H, Zheng JP (2008) Re-Os isotopes of sulfides in mantle xenoliths from eastern China: progressive modification of lithospheric mantle. Lithos 102:43–64

    Google Scholar 

  • Yang XZ, Xia QK, Deloule E, Dallai L, Fan QC, Feng M (2008) Water in minerals of the continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite xenoliths from the North China Craton. Chem Geol 256:33–45

    Google Scholar 

  • Yu JH, O’Reilly SY, Griffin WL, Xu XS, Zhang M, Zhou XM (2003) The thermal state and composition of the lithospheric mantle beneath the Leizhou Peninsula, South China. J Volcanol Geotherm Res 122:165–189

    Google Scholar 

  • Yu JH, O’Reilly SY, Zhang M, Griffin WL, Xu XS (2006) Roles of melting and metasomatism in the formation of the lithospheric mantle beneath the Leizhou Peninsula, South China. J Petrol 47:355–383

    Google Scholar 

  • Yu JH, O’Reilly SY, Wang LJ, Griffin WL, Zhou MF, Zhang M, Shu LS (2010) Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambr Res 181:97–114

    Google Scholar 

  • Yu Y, Xu XS, Griffin WL, O’Reilly SY, Xia QK (2011) H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos 126:182–197

    Google Scholar 

  • Yu JH, O’Reilly SY, Zhou M, Griffin WL, Wang L (2012) U–Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambr Res 222:424–449

    Google Scholar 

  • Zangana NA, Downes H, Thirlwall MF, Marriner GF, Bea F (1999) Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central): implications for the composition of the shallow lithospheric mantle. Chem Geol 153:11–35

    Google Scholar 

  • Zhang H, Zheng JP, Pan SK, Lu JG, Li YH, Xiang L, Lin AB (2017) Compositions and processes of lithospheric mantle beneath the west Cathaysia block, southeast China. Lithos 286–287:241–251

    Google Scholar 

  • Zhao GC, Cawood PA (2012) Precambrian geology of China. Precambrian Res 222–223:13–54

    Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res 107:45–73

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M (1998) Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev 40:471–499

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Zhang M, Lu FX, Liu GL (2004) Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos 74:41–65

    Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Zhang M, Pearson N, Pan YM (2006) Widespread Archean basement beneath the Yangtze craton. Geology 34:417–420

    Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Yu CM, Zhang HF, Pearson N, Zhang M (2007) Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta 71:5203–5225

    Google Scholar 

  • Zheng JP, Griffin WL, Li LS, O’Reilly SY, Pearson NJ, Tang HY, Liu GL, Zhao JH, Yu CM, Su YP (2011) Highly evolved Archean basement beneath the western Cathaysia Block, South China. Geochim Cosmochim Acta 75:242–255

    Google Scholar 

  • Zheng JP, Lee CT, Lu JG, Zhao JH, Wu YB, Xia B, Li XY, Zhang JF, Liu YS (2015) Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents. Earth Planet Sc Lett 409:225–231

    Google Scholar 

  • Zhou LQ, Xie JY, Shen WS, Zheng Y, Yang YJ, Shi HX, Ritzwoller MH (2012) The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int 189:1565–1583

    Google Scholar 

Download references

Acknowledgements

We thank the editor Hans Keppler and two anonymous reviewers for the comments and suggestions. Thanks to Prof. W. L. Griffin for polishing the manuscript. This work was supported by the China University of Geosciences (CUGCJ1709), the National Natural Science Foundation of China (41520104003) and the National Key R&D Program of China (2016YFC0600403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Zheng.

Additional information

Communicated by Hans Keppler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zheng, J., Lu, J. et al. Composition and evolution of the lithospheric mantle beneath the interior of the South China Block: insights from trace elements and water contents of peridotite xenoliths. Contrib Mineral Petrol 173, 53 (2018). https://doi.org/10.1007/s00410-018-1476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1476-z

Keywords

Navigation