Skip to main content
Log in

Overexpression of maize GOLDEN2 in rice and maize calli improves regeneration by activating chloroplast development

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Golden2 (G2), a member of the GARP transcription factor superfamily, regulates several biological processes and phytohormone signaling pathways in plants. In this study, we used a rice codon-optimized maize G2 gene (rZmG2) to improve the regeneration efficiency of rice and maize calli for genetic transformation. We isolated a promoter driving strong and callus-specific expression from rice to drive rZmG2 transcription from a transgene after transformation of two indica and two japonica rice cultivars. The resulting rZmG2 transgenic calli turned green in advance at the differentiation stage, thus significantly raising the regeneration rates of the transgenic indica and japonica rice plants relative to control transformations. Similar effect of this gene on improving maize transformation was also observed. Transcriptome sequencing and RT-qPCR analyses showed that many rice genes related to chloroplast development and phytohormones are upregulated in rZmG2-transgenic calli. These results demonstrate that rZmG2 can promote embryogenic callus differentiation and improve regeneration efficiency by activating chloroplast development and phytohormone pathways. We also established a heat-inducible Cre/loxP-based gene-excision system to remove rZmG2 and the antibiotic selectable gene after obtaining the transgenic plants. This study provides a useful tool for functional genomics work and biotechnology in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, R., Liu, Y., Wang, T.J., Meng, Q., Yin, H., Wang, X., Wu, Y., Nan, N., Liu, B., and Xu, Z.Y. (2019). GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiol 179, 1844–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, N., Chen, H., Zhang, C., Khan, S.A., Gandeka, M., Xie, D., and Zhuang, W. (2020). Ectopic expression of AhGLK1b (GOLDEN2-like transcription factor) in Arabidopsis confers dual resistance to fungal and bacterial pathogens. Genes 11, 343–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R., Deng, Y., Ding, Y., Guo, J., Qiu, J., Wang, B., Wang, C., Xie, Y., Zhang, Z., Chen, J., et al. (2022). Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci 65, 33–92.

    Article  PubMed  Google Scholar 

  • Fitter, D.W., Martin, D.J., Copley, M.J., Scotland, R.W., and Langdale, J.A. (2002). GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31, 713–727.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., and Lan, T. (2016). Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6, 19467–19476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiei, Y., and Komari, T. (2006). Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult 85, 271–283.

    Article  CAS  Google Scholar 

  • Hiei, Y., and Komari, T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3, 824–834.

    Article  CAS  PubMed  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, M.T. (1926). A second gene producing golden plant color in maize. Am Natist 60, 484–488.

    Article  Google Scholar 

  • Kant, S., Bi, Y.M., Zhu, T., and Rothstein, S.J. (2009). SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151, 691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kant, S., and Rothstein, S. (2009). Auxin-responsive SAUR39 gene modulates auxin level in rice. Plant Signal Behav 4, 1174–1175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, S.R., Priya, A.M., and Ramesh, M. (2013). Rapid regeneration and ploidy stability of ‘cv IR36’ indica rice (Oryza sativa L) confers efficient protocol for in vitro callus organogenesis and Agrobacterium tumefaciens mediated transformation. Bot Stud 54, 47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kepinski, S., and Leyser, O. (2004). Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci USA 101, 12381–12386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., Fukuda, H., Sugimoto, K., and Sakakibara, H. (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Wang, P., Li, J., Wei, S., Yan, Y., Yang, J., Zhao, M., Langdale, J.A., and Zhou, W. (2020). Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun Biol 3, 151–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y.J., and Zhang, Q. (2005). Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23, 540–547.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., et al. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews, H., Schopke, C., Carcamo, R., Chavarriaga, P., Fauquet, C., and Beachy, R.N. (1993). Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Rep 12, 328–333.

    Article  CAS  PubMed  Google Scholar 

  • Mookkan, M., Nelson-Vasilchik, K., Hague, J., Zhang, Z.J., and Kausch, A. P. (2017). Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36, 1477–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, H., Muramatsu, M., Hakata, M., Ueno, O., Nagamura, Y., Hirochika, H., Takano, M., and Ichikawa, H. (2009). Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol 50, 1933–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olvera-Carrillo, Y., Campos, F., Reyes, J.L., Garciarrubio, A., and Covarrubias, A.A. (2010). Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154, 373–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa, K. (2009). Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Sci 176, 522–527.

    Article  CAS  PubMed  Google Scholar 

  • Powell, A.L.T., Nguyen, C.V., Hill, T., Cheng, K.L.L., Figueroa-Balderas, R., Aktas, H., Ashrafi, H., Pons, C., Fernández-Muñoz, R., Vicente, A., et al. (2012). Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336, 1711–1715.

    Article  CAS  PubMed  Google Scholar 

  • Rauf, M., Arif, M., Dortay, H., Matallana-Ramírez, L.P., Waters, M.T., Gil Nam, H., Lim, P.O., Mueller-Roeber, B., and Balazadeh, S. (2013). ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14, 382–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossini, L., Cribb, L., Martin, D.J., and Langdale, J.A. (2001). The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13, 1231–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo, K.K., Tripathi, A.K., Pareek, A., Sopory, S.K., and Singla-Pareek, S.L. (2011). An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7, 49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo, R.K., and Tuteja, N. (2012). Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food 3, 123–128.

    Article  PubMed  Google Scholar 

  • Savitch, L.V., Subramaniam, R., Allard, G.C., and Singh, J. (2007). The GLK1 ‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. Biochem Biophysl Res Commun 359, 234–238.

    Article  CAS  Google Scholar 

  • Shimizu-Sato, S., Tsuda, K., Nosaka-Takahashi, M., Suzuki, T., Ono, S., Ta, K.N., Yoshida, Y., Nonomura, K.I., and Sato, Y. (2020). Agrobacterium-mediated genetic transformation of wild Oryza species using immature embryos. Rice 13, 33–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shri, M., Rai, A., Verma, P.K., Misra, P., Dubey, S., Kumar, S., Verma, S., Gautam, N., Tripathi, R.D., Trivedi, P.K., et al. (2013). An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma 250, 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Slamet-Loedin, I.H., Chadha-Mohanty, P., and Torrizo, L. (2014). Agrobacterium-mediated transformation: rice transformation. In: Henry, R., and Furtado, A., eds. Cereal Genomics. Methods in Molecular Biology, vol 1099. Totowa: Humana Press. 261–271.

    Chapter  Google Scholar 

  • Takahashi, T., Naito, S., and Komeda, Y. (1992). The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2, 751–761.

    Article  CAS  Google Scholar 

  • Tsukahara, M., and Hirosawa, T. (1992). Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.) callus. Plant Cell Rep 11, 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Xie, W., Chen, Y., Tang, W., Yang, J., Ye, R., Liu, L., Lin, Y., Xu, C., Xiao, J., et al. (2010). A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61, 752–766.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Shi, L., Liang, X., Zhao, P., Wang, W., Liu, J., Chang, Y., Hiei, Y., Yanagihara, C., Du, L., et al. (2022). The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 8, 110–117.

    Article  PubMed  Google Scholar 

  • Wang, P., Khoshravesh, R., Karki, S., Tapia, R., Balahadia, C.P., Bandyopadhyay, A., Quick, W.P., Furbank, R., Sage, T.L., and Langdale, J.A. (2017). Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Curr Biol 27, 3278–3287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y.X., Xiao, M.Z., Liu, Y., Fu, J.L., He, Y., and Jiang, D.A. (2017). The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Mol Biol 94, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, S.Y., Lin, H.H., Chang, Y.M., Chang, Y.L., Chang, C.K., Huang, Y.C., Ho, Y.W., Lin, C.Y., Zheng, J.Z., Jane, W.N., et al. (2022). Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. Plant Physiol 188, 442–459.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z., Zhang, Z., Ding, Z., Meng, H., Shen, R., Tang, H., Liu, Y.G., and Chen, L. (2020). Public-transcriptome-database-assisted selection and validation of reliable reference genes for qRT-PCR in rice. Sci China Life Sci 63, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z., Xie, X., Shen, R., Tan, J., Li, H., et al. (2017). Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10, 918–929.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of Guangdong Basic and Applied Research (2019B030302006), the Laboratory of Lingnan Modern Agriculture Project (NT2021002), and the National Natural Science Foundation of China (31921004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinlong Zhu or Jinxing Guo.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Tan, J., Li, T. et al. Overexpression of maize GOLDEN2 in rice and maize calli improves regeneration by activating chloroplast development. Sci. China Life Sci. 66, 340–349 (2023). https://doi.org/10.1007/s11427-022-2149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2149-2

Keywords

Navigation