Skip to main content
Log in

Understanding the molecular mechanisms of trade-offs between plant growth and immunity

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Trade-offs between plant growth and immunity are a well-known phenomenon in plants that are meant to ensure the best use of limited resources. Recently, many advances have been achieved on molecular regulations of the trade-offs between plant growth and immunity. Here, we provide an overview on molecular understanding of these trade-offs including those regulated at the transcriptional level or post-transcriptional level by transcriptional factors, microRNAs, and post-translational modifications of proteins, respectively The understanding on the molecular regulation of these trade-offs will provide new strategies to breed crops with high yield and enhanced resistance to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alston, J.M., Beddow, J.M., and Pardey, P.G. (2009). Agricultural research, productivity, and food prices in the long run. Science 325, 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  • Asai, S., Ohta, K., and Yoshioka, H. (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20, 1390–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, M.Y., Fan, M., Oh, E., and Wang, Z.Y. (2012). A triple helix-loophelix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24, 4917–4929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai, S., Yu, H., Wang, B., and Li, J. (2018). Retrospective and perspective of rice breeding in China. J Genet Genomics 45, 603–612.

    Article  PubMed  Google Scholar 

  • Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356–363.

    Article  CAS  PubMed  Google Scholar 

  • Bergelson, J., and Purrington, C.B. (1996). Surveying patterns in the cost of resistance in plants. Am Natist 148, 536–558.

    Article  Google Scholar 

  • Bharadwaj, D.N. (2016). Sustainable agriculture and plant breeding. In Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. (Springer), pp. 3–34.

  • Bjørnstad, Å, and Aastveit, K. (1990). Pleiotropic effects on the ml-o-mildew resistance gene in barley in different genetical backgrounds. Euphytica 46, 217–226.

    Article  Google Scholar 

  • Boutrot, F., and Zipfel, C. (2017). Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55, 257–286.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.K.M. (2002). Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5, 339–344.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.K.M. (2003). A cost of disease resistance: paradigm or peculiarity? Trends Genets 19, 667–671.

    Article  CAS  Google Scholar 

  • Chandran, D., Rickert, J., Huang, Y., Steinwand, M.A., Marr, S.K., and Wildermuth, M.C. (2014). Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 15, 506–513.

    Article  CAS  PubMed  Google Scholar 

  • Chandran, V., Wang, H., Gao, F., Cao, X.L., Chen, Y.P., Li, G.B., Zhu, Y., Yang, X.M., Zhang, L.L., Zhao, Z.X., et al. (2019). miR396-OsGRFs module balances growth and rice blast disease-resistance. Front Plant Sci 9, 1999.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conti, L., Nelis, S., Zhang, C., Woodcock, A., Swarup, R., Galbiati, M., Tonelli, C., Napier, R., Hedden, P., Bennett, M., et al. (2014). Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin. Dev Cell 28, 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Cui, C., Wang, J.J., Zhao, J.H., Fang, Y.Y., He, X.F., Guo, H.S., and Duan, C.G. (2020). A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol Plant 13, 231–245.

    Article  CAS  PubMed  Google Scholar 

  • de Bianchi, S., Dall’Osto, L., Tognon, G., Morosinotto, T., and Bassi, R. (2008). Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20, 1012–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, Y., Liu, M., Li, X., and Li, F. (2018). microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. Sci China Life Sci 61, 138–147.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965.

    Article  CAS  PubMed  Google Scholar 

  • Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., Chen, H., Zhu, X., and Li, Y. (2016). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2, 15203.

    Article  CAS  Google Scholar 

  • Fan, M., Bai, M.Y., Kim, J.G., Wang, T., Oh, E., Chen, L., Park, C.H., Son, S.H., Kim, S.K., Mudgett, M.B., et al. (2014). The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. Plant Cell 26, 828–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, F., Wang, K., Liu, Y., Chen, Y., Chen, P., Shi, Z., Luo, J., Jiang, D., Fan, F., Zhu, Y., et al. (2015). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2, 15196.

    Article  PubMed  CAS  Google Scholar 

  • Gao, P., Bai, X., Yang, L., Lv, D., Li, Y., Cai, H., Ji, W., Guo, D., and Zhu, Y. (2010). Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231, 991–1001.

    Article  CAS  PubMed  Google Scholar 

  • Goto, S., Sasakura-Shimoda, F., Suetsugu, M., Selvaraj, M.G., Hayashi, N., Yamazaki, M., Ishitani, M., Shimono, M., Sugano, S., Matsushita, A., et al. (2015). Development of disease-resistant rice by optimized expression of WRKY45. Plant Biotechnol J 13, 753–765.

    Article  CAS  PubMed  Google Scholar 

  • Hammoudi, V., Fokkens, L., Beerens, B., Vlachakis, G., Chatterjee, S., Arroyo-Mateos, M., Wackers, P.F.K., Jonker, M.J., and van den Burg, H.A. (2018). The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet 14, e1007157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua, J. (2013). Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16, 406–413.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, I.H. (1992). Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63, 141–152.

    Article  Google Scholar 

  • Ji, X., Wang, D., and Gao, C. (2019). CRISPR editing-mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Sci China Life Sci 62, 1246–1249.

    Article  PubMed  Google Scholar 

  • Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S., Yang, F., Li, L., Chen, H., Chen, S., and Zhang, J. (2015). The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity. Plant Physiol 167, 1076–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjær, B., Jensen, H.P., Jensen, J., and Jørgensen, J.H. (1990). Associations between three ml-o powdery mildew resistance genes and agronomic traits in barley. Euphytica 46, 185–193.

    Article  Google Scholar 

  • Kovács, L., Damkjaer, J., Kereïche, S., Ilioaia, C., Ruban, A.V., Boekema, E.J., Jansson, S., and Horton, P. (2006). Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18, 3106–3120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, H., and Asino, G.O. (1994). Grain yield losses in maize (Zea mays L.) genotypes in relation to their resistance against Chilo partellus (Swinhoe) infestation at anthesis. Crop Protection 13, 136–140.

    Article  Google Scholar 

  • Lee, H.A., and Yeom, S.I. (2015). Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Brief Funct Genomics 14, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.S., Wang, S., Sritubtim, S., Chen, J.G., and Ellis, B.E. (2009). Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J 57, 975–985.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Liu, W., and Zhou, X. (2019a). Pivoting plant immunity from theory to the field. Sci China Life Sci 62, 1539–1542.

    Article  PubMed  Google Scholar 

  • Li, F., Pignatta, D., Bendix, C., Brunkard, J.O., Cohn, M.M., Tung, J., Sun, H., Kumar, P., and Baker, B. (2012). MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109, 1790–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Yu, Y., Zhou, Z., and Zhou, J.M. (2016a). Plant pattern-recognition receptors controlling innate immunity. Sci China Life Sci 59, 878–888.

    Article  PubMed  Google Scholar 

  • Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., He, Z., Ren, Y., Li, W., Deng, Q., et al. (2016b). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J 14, 2134–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., and Yu, B. (2017). miRNA limits MAP kinase-mediated immunity: optimization of plant fitness. J Exp Bot 68, 5685–5687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Chern, M., Yin, J., Wang, J., and Chen, X. (2019b). Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol 50, 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Guo, S., Xu, Y., Li, C., Zhang, Z., Zhang, D., Xu, S., Zhang, C., and Chong, K. (2014). OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165, 160–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., et al. (2019). Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants 5, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2004). Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38, 800–809.

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Durán, R., Macho, A.P., Boutrot, F., Segonzac, C., Somssich, I.E., and Zipfel, C. (2013). The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2, e00983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Yu, H., Xiong, G., Wang, J., Jiao, Y., Liu, G., Jing, Y., Meng, X., Hu, X., Qian, Q., et al. (2013). Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinovsky, F.G., Batoux, M., Schwessinger, B., Youn, J.H., Stransfeld, L., Win, J., Kim, S.K., and Zipfel, C. (2014). Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH INCREASED LEAF INCLINATION1 BINDING bHLH1. Plant Physiol 164, 1443–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Duck Koo, Y., Jin, J.B., Bressan, R.A., et al. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102, 7760–7765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Doğan, Y.ı., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., et al. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotech Biotech Equipment 32, 261–285.

    Article  CAS  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D.G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, L., Jay, F., Nomura, K., He, S.Y., and Voinnet, O. (2008). Suppression of the microRNA pathway by bacterial effector proteins. Science 321, 964–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning, Y., Liu, W., and Wang, G.L. (2017). Balancing immunity and yield in crop plants. Trends Plant Sci 22, 1069–1079.

    Article  CAS  PubMed  Google Scholar 

  • Pajerowska-Mukhtar, K.M., Wang, W., Tada, Y., Oka, N., Tucker, C.L., Fonseca, J.P., and Dong, X. (2012). The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr Biol 22, 103–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J.H., and Shin, C. (2015). The role of plant small RNAs in NB-LRR regulation. Brief Funct Genomics 14, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza, I., and Weigel, D. (2011). MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16, 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Sadanandom, A., Ádám, É., Orosa, B., Viczián, A., Klose, C., Zhang, C., Josse, E.M., Kozma-Bognár, L., and Nagy, F. (2015). SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 112, 11108–11113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer, C., Zourelidou, M., and Bevan, M.W. (1998). Plant transcription factor studies. Annu Rev Plant Physiol Plant Mol Biol 49, 127–150.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, B., Joshi, D., Yadav, P.K., Gupta, A.K., and Bhatt, T.K. (2016). Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci 7.

  • Sharp, G.L., Martin, J.M., Lanning, S.P., Blake, N.K., Brey, C.W., Sivamani, E., Qu, R., and Talbert, L.E. (2002). Field evaluation of transgenic and classical sources of resistance. Crop Sci 42, 105.

    PubMed  Google Scholar 

  • Shi, Y., and Jin, Y.X. (2009). MicroRNA in cell differentiation and development. Sci China Ser C-Life Sci 52, 205–211.

    Article  CAS  Google Scholar 

  • Shimono, M., Koga, H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., Kurihara, T., Matsushita, A., Sugano, S., Jiang, C.J., et al. (2012). Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13, 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Shu, K., and Yang, W. (2017). E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol 58, 1461–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smakowska, E., Kong, J., Busch, W., and Belkhadir, Y. (2016). Organ-specific regulation of growth-defense tradeoffs by plants. Curr Opin Plant Biol 29, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Soto-Suárez, M., Baldrich, P., Weigel, D., Rubio-Somoza, I., and San Segundo, B. (2017). The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci Rep 7, 44898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stulemeijer, I.J.E., and Joosten, M.H.A.J. (2008). Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Mol Plant Pathol 9, 545–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimono, M., Sugano, S., Nakayama, A., Jiang, C.J., Ono, K., Toki, S., and Takatsuji, H. (2007). Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19, 2064–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Fan, X.Y., Cao, D.M., Tang, W., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S., Oh, E., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19, 765–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda, K., and Somssich, I.E. (2015). Transcriptional networks in plant immunity. New Phytol 206, 932–947.

    Article  CAS  PubMed  Google Scholar 

  • Van der Plank, J.E. (1963). Plant Diseases: Epidemics and Control. (Academic Press).

  • Varshney, R.K., Hoisington, D.A., and Tyagi, A.K. (2006). Advances in cereal genomics and applications in crop breeding. Trends Biotech 24, 490–499.

    Article  CAS  Google Scholar 

  • Wang, B., and Li, J. (2019). Understanding the molecular bases of agronomic trait improvement in rice. Plant Cell 31, 1416–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., He, X., Wang, X., Zhang, S., and Guo, X. (2017). ghrmiR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. J Exp Bot 68, 5895–5906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., et al. (2018). A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Xue, Y., and Li, J. (2005). Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10, 610–614.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., et al. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Wing, R.A., Purugganan, M.D., and Zhang, Q. (2018). The rice genome revolution: from an ancient grain to Green Super Rice. Nat Rev Genet 19, 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R. S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, G., Kato, H., and Imai, R. (2012). Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 443, 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, D., Tian, Z., Rao, Y., Dong, G., Yang, Y., Huang, L., Leng, Y., Xu, J., Sun, C., and Zhang, G. (2017). Rational design of high-yield and superior-quality rice. Nature Plants 3, 1–5.

    Article  Google Scholar 

  • Zeng, Q., Chen, J.G., and Ellis, B.E. (2011). AtMPK4 is required for male-specific meiotic cytokinesis in Arabidopsis. Plant J 67, 895–906.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H. D., Raikhel, N., and Jin, H. (2011). Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgilocalized SNARE gene, MEMB12. Mol Cell 42, 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., and Luo, H. (2013). MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83, 59–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S.X., Zhu, Y., Wang, L.F., Zheng, Y.P., Chen, J.F., Li, T.T., Yang, X. M., Wang, H., Li, X.P., Ma, X.C., et al. (2020). Osa-miR1873 fine-tunes rice immunity against Magnaporthe oryzae and yield traits. J Integr Plant Biol jipb.12900.

  • Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., et al. (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA 115, 3174–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, Y., Wang, S., Zhou, Y., Bai, J., Huang, G., Liu, X., Zhang, Y., Tang, D., and Lu, D. (2018). Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell 30, 2779–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Xuewei Chen is supported by the National Natural Science Foundation of China (31772153 and 31825022); Jing Wang is supported by the National Natural Science Foundation of China (31922066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Chen.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Long, X., Chern, M. et al. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. Sci. China Life Sci. 64, 234–241 (2021). https://doi.org/10.1007/s11427-020-1719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1719-y

Keywords

Navigation