Skip to main content
Log in

microRNA-mediated R gene regulation: molecular scabbards for double-edged swords

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Plant resistance (R) proteins are immune receptors that recognize pathogen effectors and trigger rapid defense responses, namely effector-triggered immunity. R protein-mediated pathogen resistance is usually race specific. During plant-pathogen coevolution, plant genomes accumulated large numbers of R genes. Even though plant R genes provide important natural resources for breeding disease-resistant crops, their presence in the plant genome comes at a cost. Misregulation of R genes leads to developmental defects, such as stunted growth and reduced fertility. In the past decade, many microRNAs (miRNAs) have been identified to target various R genes in plant genomes. miRNAs reduce R gene levels under normal conditions and allow induction of R gene expression under various stresses. For these reasons, we consider R genes to be double-edged “swords” and miRNAs as molecular “scabbards”. In the present review, we summarize the contributions and potential problems of these “swords” and discuss the features and production of the “scabbards”, as well as the mechanisms used to pull the “sword” from the “scabbard” when needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, H.A. (1912). The mosaic disease of tobacco. Science 36, 875–876.

    Article  CAS  PubMed  Google Scholar 

  • Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221.

    Article  CAS  PubMed  Google Scholar 

  • Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36, 1282–1290.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, P.A., Lawrence, G.J., Morrish, B.C., Ayliffe, M.A., Finnegan, E. J., and Ellis, J.G. (1997). Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9, 641–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arikit, S., Xia, R., Kakrana, A., Huang, K., Zhai, J., Yan, Z., Valdés-López, O., Prince, S., Musket, T.A., Nguyen, H.T., Stacey, G., and Meyers, B. C. (2014). An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26, 4584–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D.G., and Parker, J. E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295, 2077–2080.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.

    Article  CAS  PubMed  Google Scholar 

  • Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S.P. (1997). Signaling in plant-microbe interactions. Science 276, 726–733.

    Article  CAS  PubMed  Google Scholar 

  • Baumberger, N., and Baulcombe, D.C. (2005). Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102, 11928–11933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendahmane, A., Kanyuka, K., and Baulcombe, D.C. (1999). The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8, 521–539.

    Article  CAS  PubMed  Google Scholar 

  • Boccara, M., Sarazin, A., Thiébeauld, O., Jay, F., Voinnet, O., Navarro, L., and Colot, V. (2014). The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10, e1003883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bomblies, K., and Weigel, D. (2007). Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8, 382–393.

    Article  CAS  PubMed  Google Scholar 

  • Carra, A., Mica, E., Gambino, G., Pindo, M., Moser, C., Pè, M.E., and Schubert, A. (2009). Cloning and characterization of small non-coding RNAs from grape. Plant J 59, 750–763.

    Article  CAS  PubMed  Google Scholar 

  • Chae, E., Bomblies, K., Kim, S.T., Karelina, D., Zaidem, M., Ossowski, S., Martín-Pizarro, C., Laitinen, R.A.E., Rowan, B.A., Tenenboim, H., Lechner, S., Demar, M., Habring-Müller, A., Lanz, C., Rätsch, G., and Weigel, D. (2014). Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159, 1341–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, V.V., and Carrington, J.C. (2004). Viral RNA silencing suppressors inhibit the micro-RNA pathway at an intermediate step. Genes Dev 18, 1179–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S. H. (2010). 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107, 15269–15274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. (2005). microRNA biogenesis and function in plants. FEBS Lett 579, 5923–5931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X.M. (2009). Small RNAs and their roles in plant development. In: Annual Review of Cell and Developmental Biology. (Palo Alto: Annual Reviews), pp. 21–44.

    Google Scholar 

  • Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Hostmicrobe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Claverie, M., Dirlewanger, E., Bosselut, N., Van Ghelder, C., Voisin, R., Kleinhentz, M., Lafargue, B., Abad, P., Rosso, M.N., Chalhoub, B., and Esmenjaud, D. (2011). The Ma gene for complete-spectrum resistance to meloidogyne species in prunus is a TNL with a huge repeated Cterminal post-LRR region. Plant Physiol 156, 779–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crute, I.R., and Pink, D. (1996). Genetics and utilization of pathogen resistance in plants. Plant Cell 8, 1747–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries, S., Kloesges, T., and Rose, L.E. (2015). Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the solanaceae. Genome Biol Evol 7, 3307–3321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Pendón, J.A., and Ding, S.W. (2008). Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46, 303–326.

    Article  PubMed  CAS  Google Scholar 

  • Dodds, P.N., Lawrence, G.J., and Ellis, J.G. (2001). Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13, 163–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., Han, B., and He, G. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106, 22163–22168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunoyer, P., Himber, C., and Voinnet, O. (2006). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38, 258–263.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, J.G., Lawrence, G.J., Luck, J.E., and Dodds, P.N. (1999). Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C. M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., and Carrington, J.C. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS ONE 2, e219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, Y., Yang, J., Mathioni, S.M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C., Li, X., Xiao, J., Meyers, B.C., and Zhang, Q. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113, 15144–15149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei, Q., Li, P., Teng, C., and Meyers, B.C. (2015). Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Plant J 83, 451–465.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Liu, S., Wang, M., Lang, Q., and Jin, C. (2014). Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta 240, 1335–1352.

    Article  CAS  PubMed  Google Scholar 

  • Flor, H.H. (1947). Inheritance of reaction to rust in flax. J Agric Res 74, 241–262.

    Google Scholar 

  • Hajjar, R., and Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13.

    Article  Google Scholar 

  • Han, L., Weng, K., Ma, H., Xiang, G., Li, Z., Wang, Y., Liu, G., and Xu, Y. (2016). Identification and characterization of erysiphe necator-responsive microRNAs in Chinese wild vitis pseudoreticulata by high-throughput sequencing. Front Plant Sci 7, 621.

    PubMed  PubMed Central  Google Scholar 

  • He, X.F., Fang, Y.Y., Feng, L., and Guo, H.S. (2008). Characterization of conserved and novel microRNAs and their targets, including a TuMVinduced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582, 2445–2452.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, F.O. (1938). Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathology 28, 553–561.

    Google Scholar 

  • Hong, H., Liu, Y., Zhang, H., Xiao, J., Li, X., and Wang, S. (2015). Small RNAs and gene network in a durable disease resistance gene-mediated defense responses in rice. PLoS ONE 10, e0137360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyt, E. (1988). Conserving the Wild Relatives of Crops. (Rome: IBPGR, IUCN, WWF).

    Google Scholar 

  • Schultes, R.E. (1989). Conserving the wild relatives of crops. Econ Bot 43, 191–191.

    Article  Google Scholar 

  • Islam, M.R., and Shepherd, K.W. (1991). Present status of genetics of rust resistance in flax. Euphytica 55, 255–267.

    Article  Google Scholar 

  • Jagadeeswaran, G., Zheng, Y., Li, Y.F., Shukla, L.I., Matts, J., Hoyt, P., Macmil, S.L., Wiley, G.B., Roe, B.A., Zhang, W., and Sunkar, R. (2009). Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184, 85–98.

    Article  CAS  PubMed  Google Scholar 

  • Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F.X., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., and Wang, J. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Khalid, A., Zhang, Q., Yasir, M., and Li, F. (2017). Small RNA based genetic engineering for plant viral resistance: application in crop protection. Front Microbiol 8, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42, D68–D73.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, A., Paul, S., Dey, A., and Pal, A. (2017). High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Sci 257, 96–105.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A., and Ellis, J.G. (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7, 1195–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelandais-Brière, C., Naya, L., Sallet, E., Calenge, F., Frugier, F., Hartmann, C., Gouzy, J., and Crespi, M. (2009). Genome-wide medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21, 2780–2796.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F., and Ding, S.W. (2006). Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60, 503–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Orban, R., and Baker, B. (2012a). SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70, 891–901.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Pignatta, D., Bendix, C., Brunkard, J.O., Cohn, M.M., Tung, J., Sun, H., Kumar, P., and Baker, B. (2012b). microRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109, 1790–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian, S., Cho, W.K., Kim, S.M., Choi, H., and Kim, K.H. (2016). Timecourse small RNA profiling reveals rice miRNAs and their target genes in response to rice stripe virus infection. PLoS ONE 11, e0162319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, G., Li, Y., He, H., Wang, F., and Yu, D. (2013). Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya. Planta 238, 739–752.

    Article  CAS  PubMed  Google Scholar 

  • Lu, C., Kulkarni, K., Souret, F.F., MuthuValliappan, R., Tej, S.S., Poethig, R.S., Henderson, I.R., Jacobsen, S.E., Wang, W., Green, P.J., and Meyers, B.C. (2006). microRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16, 1276–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., Sun, Y.H., Amerson, H., and Chiang, V.L. (2007). microRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51, 1077–1098.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S., Sun, Y.H., Shi, R., Clark, C., Li, L., and Chiang, V.L. (2005). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17, 2186–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas, S.J., Baştaş, K., and Budak, H. (2014). Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 536, 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y., Ma, T., Zhang, A., Ong, K.H., Li, Z., Yang, J., and Yin, Z. (2016). Marker-assisted breeding of the rice restorer line Wanhui 6725 for disease resistance, submergence tolerance and aromatic fragrance. Rice 9, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • McHale, M., Eamens, A.L., Finnegan, E.J., and Waterhouse, P.M. (2013). A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J 76, 519–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., and Williamson, V.M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucinerich repeat family of plant genes. Plant Cell 10, 1307–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang, S., Park, G., Atamian, H.S., Han, C.S., Stajich, J.E., Kaloshian, I., and Borkovich, K.A. (2014). microRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10, e1004464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao, Y., Liu, L., Xiong, Q., Flores, C., Wong, J., Shi, J., Wang, X., Liu, X., Xiang, Q., Jiang, S., Zhang, F., Wang, Y., Judelson, H.S., Chen, X., and Ma, W. (2013). Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45, 330–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E., and Williamson, V.M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95, 9750–9754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schornack, S., Ballvora, A., Gürlebeck, D., Peart, J., Ganal, M., Baker, B., Bonas, U., and Lahaye, T. (2004). The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37, 46–60.

    Article  CAS  PubMed  Google Scholar 

  • Shi, T., Wang, K., and Yang, P. (2017). The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. Plant J 89, 442–457.

    Article  CAS  PubMed  Google Scholar 

  • Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/ pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530–543.

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad, P.V., Chen, H.M., Patel, K., Bond, D.M., Santos, B.A.C.M., and Baulcombe, D.C. (2012). A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai, P., Liang, D., Zhang, Z., Yin, W., and Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14, 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R., Tiwari, J.K., Rawat, S., Sharma, V., and Singh, B.P. (2016). In silico identification of candidate microRNAs and their targets in potato somatic hybrid Solanum tuberosum (+) S. pinnatisectum for late blight resistance. Plant Omics 9, 159–164.

    Article  CAS  Google Scholar 

  • Solomon-Blackburn, R.M., and Barker, H. (2001). A review of host majorgene resistance to potato viruses X, Y, A and V in potato: genes, genetics and mapped locations. Heredity 86, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Song, C., Wang, C., Zhang, C., Korir, N.K., Yu, H., Ma, Z., and Fang, J. (2010). Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics 11, 431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C., and Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, S., Fu, Y., Sunkar, R., Barbazuk, W.B., Zhu, J.K., and Yu, O. (2008). Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9, 160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szittya, G., Moxon, S., Santos, D.M., Jing, R., Fevereiro, M.P.S., Moulton, V., and Dalmay, T. (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9, 593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas, C.M., Dixon, M.S., Parniske, M., Golstein, C., and Jones, J.D.G. (1998). Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philos Trans R Soc B-Biol Sci 353, 1413–1424.

    Article  CAS  Google Scholar 

  • Tian, D., Traw, M.B., Chen, J.Q., Kreitman, M., and Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77.

    Article  CAS  PubMed  Google Scholar 

  • Turina, M., Kormelink, R., and Resende, R.O. (2016). Resistance to tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol 54, 347–371.

    Article  CAS  PubMed  Google Scholar 

  • Vleeshouwers, V.G.A.A., Raffaele, S., Vossen, J.H., Champouret, N., Oliva, R., Segretin, M.E., Rietman, H., Cano, L.M., Lokossou, A., Kessel, G., Pel, M.A., and Kamoun, S. (2011). Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49, 507–531.

    Article  CAS  PubMed  Google Scholar 

  • Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687.

    Article  CAS  PubMed  Google Scholar 

  • Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101–1115.

    Article  CAS  PubMed  Google Scholar 

  • Xia, R., Xu, J., Arikit, S., and Meyers, B.C. (2015). Extensive families of miRNAs and PHAS loci in norway spruce demonstrate the origins of complex phasiRNA networks in seed plants. Mol Biol Evol 32, 2905–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Mu, X., Liu, C., Cai, J., Shi, K., Zhu, W., and Yang, Q. (2015). Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J Integr Plant Biol 57, 1078–1088.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., and Hua, J. (2004). A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16, 1060–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., van Tunen, A., and He, Y. (2012). Identification of conserved and novel micro- RNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63, 1025–1038.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, J., Jeong, D.H., De Paoli, E., Park, S., Rosen, B.D., Li, Y., González, A.J., Yan, Z., Kitto, S.L., Grusak, M.A., Jackson, S.A., Stacey, G., Cook, D.R., Green, P.J., Sherrier, D.J., and Meyers, B.C. (2011). microRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25, 2540–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, J., Zhang, H., Arikit, S., Huang, K., Nan, G.L., Walbot, V., and Meyers, B.C. (2015). Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112, 3146–3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, W., Li, X., Tian, W., Zhou, Y., Pan, X., Cao, S., Zhao, X., Zhao, B., Zhang, Q., and Zhu, L. (2000). Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacteriummediated system. Sci China Ser C-Life Sci 43, 361–368.

    Article  CAS  Google Scholar 

  • Zhang, B., Yang, Y., Wang, J., Ling, X., Hu, Z., Liu, T., Chen, T., and Zhang, W. (2015). A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana.benthamiana and Nicotiana.tabacum. Eur J Plant Pathol 142, 715–729.

    Article  CAS  Google Scholar 

  • Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol Plant 3, 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H. D., Raikhel, N., and Jin, H. (2011). Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42, 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zhu, Y., Wu, H., and Guo, H. (2016a). Post-transcriptional gene silencing in plants: a double-edged sword. Sci China Life Sci 59, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Goritschnig, S., Dong, X., and Li, X. (2003). A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1- 1, constitutive 1. Plant Cell 15, 2636–2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Xia, R., Kuang, H., and Meyers, B.C. (2016b). The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol 33, 2692–2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J.P., Diao, S., Zhang, B.Y., Niu, B.Q., Wang, Q.L., Wan, X.C., and Luo, Y.Q. (2012). Phylogenetic analysis and molecular evolution patterns in the miR482-miR1448 polycistron of Populus L.. PLoS ONE 7, e47811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, M., Cai, C., Zhai, J., Lin, F., Li, L., Shreve, J., Thimmapuram, J., Hughes, T.J., Meyers, B.C., and Ma, J. (2015a). Coordination of microRNAs, phasiRNAs, and NB-LRR genes in response to a plant pathogen: insights from analyses of a set of soybean Rps gene near-isogenic lines. Plant Genome 8, 0–3835.

    Article  CAS  Google Scholar 

  • Zhao, M., Meyers, B.C., Cai, C., Xu, W., and Ma, J. (2015b). Evolutionary patterns and coevolutionary consequences of MIRNA genes and microRNA targets triggered by multiple mechanisms of genomic duplications in soybean. Plant Cell 27, 546–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., Cai, B., Xin, X.F., Liu, X., Zhang, C., Pan, Y., Ma, R., Li, Q., Jiang, W., Zeng, Y., Shangguan, X., Wang, H., Du, B., Zhu, L., Xu, X., Feng, Y.Q., He, S.Y., Chen, R., Zhang, Q., and He, G. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA 113, 12850–12855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, J.M., and Yang, W.C. (2016). Receptor-like kinases take center stage in plant biology. Sci China Life Sci 59, 863–866.

    Article  PubMed  Google Scholar 

  • Zhu, Q.H., Fan, L., Liu, Y., Xu, H., Llewellyn, D., and Wilson, I. (2013). miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8, e84390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91440103, 31600984) and Fundamental Research Funds for the Central Universities (2662014PY008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Liu, M., Li, X. et al. microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. Sci. China Life Sci. 61, 138–147 (2018). https://doi.org/10.1007/s11427-017-9237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9237-4

Keywords

Navigation