Skip to main content
Log in

Quantitative trait locus analysis of lateral branch-related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstracts

A group of 224 recombinant inbred lines (RILs) was derived from a narrow cross between 2 cucumber (Cucumis sativus L.) lines, namely, S94 (Northern China type with weak lateral branch growth potential and early lateral branch sprouting time) and S06 (Northern European type with strong lateral branch growth potential and late lateral branch sprouting time). These lines were then used for investigating lateral branch-related traits. A total of 36 quantitative trait loci (QTLs) were detected for the following 4 lateral branch-related traits: lateral branch average length (LBAL), lateral branch total length (LBTL), lateral branch number (LBN), and first lateral branch node (FLBN). Further, each QTL explained 3.1% (lbtl2.1, spring) to 32.3% (lbn2.3, spring) of the observed phenotypic variance. Eleven QTLs (lbal1.1, lbtl1.1, lbn1.2, flbn1.2, etc.) for different traits were found to be clustered on the e23m18d-ME23EM6c section (7.4 cM) of linkage group (LG) 1; further, 15 QTLs (lbal2.1, lbtl2.1, lbn2.1, flbn2.1, etc.) were found to be clustered on the S94A1-ME4SA4a section (13.9 cM) of LG2. Twenty-one QTLs explained more than 10% of the phenotypic variance. Moreover, lbtl1.3 (autumn, 26.2%, logarithm of odds (LOD) = 17.4; spring, 26.9%, LOD = 17.9) had stable position and contribution in both seasons. Several sequence-anchor markers (CMBR40, F, CS30, S94A1, CSWTA11B, etc.) were closely linked with some QTLs for LBAL, LBTL, LBN, and FLBN, which can be used for the marker-assisted selection to improve the plant architecture in cucumber breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong P T, Li D. Genetic control of plant shoot branching. Mol Plant Breed (in Chinese), 2005, 2: 151–162

    Google Scholar 

  2. Tang J B, Zeng W Y, Wang W M, et al. Genetic analysis and gene mapping of a rice few-tillering mutant in early backcross populations (Oryza sativa L.). Sci China Ser C-Life Sci, 2001, 44(6): 570–575, 10.1007/BF02879350, 1:CAS:528:DC%2BD38XitVCnsr0%3D

    Article  CAS  Google Scholar 

  3. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386(3): 486–488

    Google Scholar 

  4. Schmitz G, Theres K. Shoot and inflorescence branching. Curr Opin Plant Biol, 2005, 8: 506–511, 16054429, 10.1016/j.pbi.2005.07.010, 1:CAS:528:DC%2BD2MXosVahsbY%3D

    Article  PubMed  CAS  Google Scholar 

  5. Shuai B, Reynaga-Peña C G, Springer P S. The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant physiology, 2002, 129(6): 747–761, 12068116, 10.1104/pp.010926, 1:CAS:528:DC%2BD38XkvV2jt70%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Greb T, Clarenz O, Schäfer E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev, 2003, 17: 1175–1187, 12730136, 10.1101/gad.260703, 1:CAS:528:DC%2BD3sXjslGkt7s%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Schumacher K, Schmitt T, Rossberg M, et al. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Plant Biol, 1999, 96: 290–295, 1:CAS:528:DyaK1MXjvV2guw%3D%3D

    CAS  Google Scholar 

  8. Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice. Nature, 2003, 422: 618–621, 12687001, 10.1038/nature01518, 1:CAS:528:DC%2BD3sXislCgtL0%3D

    Article  PubMed  CAS  Google Scholar 

  9. Schmitz G, Tilmann E, Carriero F, et al. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA, 2002, 99(2): 1064–1069, 11805344, 10.1073/pnas.022516199, 1:CAS:528:DC%2BD38Xht1Wit7s%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA, 2003, 100(20): 11765–11770, 13130077, 10.1073/pnas.1932414100, 1:CAS:528:DC%2BD3sXotFKmur0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Gallavotti A, Zhao Q, Kyozuka J, et al. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630–636, 15577912, 10.1038/nature03148, 1:CAS:528:DC%2BD2cXhtVeht7rF

    Article  PubMed  CAS  Google Scholar 

  12. Mayer K F X, Schoof H, Haecker A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805–815, 9865698, 10.1016/S0092-8674(00)81703-1, 1:CAS:528:DyaK1MXivVKh

    Article  PubMed  CAS  Google Scholar 

  13. Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89: 575–585, 9160749, 10.1016/S0092-8674(00)80239-1, 1:CAS:528:DyaK2sXjsVShur0%3D

    Article  PubMed  CAS  Google Scholar 

  14. Stirnberg P, van De Sande K, Leyser H M O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 2002, 129: 1131–1141, 11874909, 1:CAS:528:DC%2BD38XisVWrur8%3D

    PubMed  CAS  Google Scholar 

  15. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485–488, 9087405, 10.1038/386485a0, 1:CAS:528:DyaK2sXisVSqurc%3D

    Article  PubMed  CAS  Google Scholar 

  16. Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33: 513–520, 12581309, 10.1046/j.1365-313X.2003.01648.x, 1:CAS:528:DC%2BD3sXhslOgt7Y%3D

    Article  PubMed  CAS  Google Scholar 

  17. Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed, 1997, 3: 257–268, 10.1023/A:1009689002015, 1:CAS:528:DyaK2sXmtlGjtLc%3D

    Article  CAS  Google Scholar 

  18. Fazio G, Staub J E, Stevens M R. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet, 2003, 107: 864–874, 12827247, 10.1007/s00122-003-1277-1, 1:CAS:528:DC%2BD3sXmvFantL4%3D

    Article  PubMed  CAS  Google Scholar 

  19. Li X Z, Pan J S, Wang G, et al. Localization of genes for lateral branch and female sex expression and construction of a molecular linkage map in cucumber (Cucumis sativus L.) with RAPD markers. Prog Nat Sci, 2005, 15(2): 143–148, 10.1080/10020070512331341900, 1:CAS:528:DC%2BD2MXkvVeqsL8%3D

    Article  CAS  Google Scholar 

  20. Wang G, Pan J S, Li X Z, et al. Construction of a cucumber genetic linkage map with SRAP markers and location of the gene for lateral branch traits. Sci China Ser C-Life Sci, 2005, 48(3): 213–220, 10.1360/062004-11, 1:CAS:528:DC%2BD2MXnt1yksrg%3D

    Article  CAS  Google Scholar 

  21. Kennard W C, Poetter K, Dijkhuizen A, et al. Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet, 1994, 89:42–48, 1:CAS:528:DyaK2MXivFWkt7c%3D

    CAS  Google Scholar 

  22. Yuan X J, Pan J S, Cai R, et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica, 2008, doi: 10.1007/s10681-008-9722-5.

  23. Yuan X J, Li X Z, Pan J S, et al. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed, 2008, 127: 180–188, 10.1111/j.1439-0523.2007.01426.x, 1:CAS:528:DC%2BD1cXltl2nu7g%3D

    Article  CAS  Google Scholar 

  24. Lander E S, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural population. Genomics, 1987, 1:174–181, 3692487, 10.1016/0888-7543(87)90010-3, 1:CAS:528:DyaL1cXhsVCksrk%3D

    Article  PubMed  CAS  Google Scholar 

  25. Kong Q, Xiang C, Yu Z. Development of EST-SSRs in Cucumis sativus from sequence database. Mol Ecol Notes, 2006, 6: 1234–1236, 10.1111/j.1471-8286.2006.01500.x, 1:CAS:528:DC%2BD2sXmvVSntg%3D%3D

    Article  CAS  Google Scholar 

  26. Robbins M D. Molecular marker development, QTL pyramiding, and comparative analysis of phenotypic and marker-assisted selection in cucumber. PhD Dissertation, University of Wisconsin-Madison, USA, 2006

    Google Scholar 

  27. Li X Z, Yuan X J, Jiang S, et al. Development of sequence characterized amplified region (SCAR) markers in cucumber. Mol Plant Breed (in Chinese), 2007, 5(3): 393–402, 1:CAS:528:DC%2BD1cXos1Onu78%3D

    CAS  Google Scholar 

  28. Levine D M, Ramsey P P, Smidt R K. Applied Statistics for Engineers and Scientists: Using Microsoft Excel and MINITABLE. Upper Saddle River, NJ: Prentice-Hall, Inc., 2001

    Google Scholar 

  29. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90: 10972–10976, 8248199, 10.1073/pnas.90.23.10972, 1:CAS:528:DyaK2cXkslWlsQ%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Doebley J, Stec A, Gustus C. Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333–346, 8536981, 1:STN:280:BymD2c3ptFI%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93(26): 15503–15507, 11038534, 10.1073/pnas.93.26.15503, 1:CAS:528:DyaK2sXotVam

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Salvi Si, Tuberosa R. To clone or not to clone plant QTLs: present and future chanllenges. Trends Plant Sci, 2005, 10(6): 297–304, 15949764, 10.1016/j.tplants.2005.04.008, 1:CAS:528:DC%2BD2MXltVaqtr0%3D

    Article  PubMed  CAS  Google Scholar 

  33. Cramer C S, Wehner T C. Path analysis of the correlation between fruit number and plant traits of cucumber populations. HortScience, 2000, 35: 708–711

    Google Scholar 

  34. Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet, 2003, 107:875–883, 12955212, 10.1007/s00122-003-1313-1, 1:CAS:528:DC%2BD3sXmvFantLk%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Cai.

Additional information

Supported by Shanghai Leading Academic Discipline Project (Grant No. B209)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S., Yuan, X., Pan, J. et al. Quantitative trait locus analysis of lateral branch-related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. SCI CHINA SER C 51, 833–841 (2008). https://doi.org/10.1007/s11427-008-0101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0101-1

Keywords

Navigation