Skip to main content
Log in

A new sensitization strategy for achieving organic RTP in aqueous solution: tunable RTP and UC emission in supramolecular TTA-UC systems

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Achieving room temperature phosphorescence (RTP) of heavy-atom-free organic molecules with near-infrared (NIR) emission in solutions is fascinating for medical and biological applications but is highly challengable. Herein, we report a new sensitization strategy to achieve RTP of heavy-atom-free fluorophores which served as energy acceptors in triplet-triplet annihilation upconversion (TTA-UC) by carefully designing the accommodated microenvironments through non-covalent interactions with a PAMAM dendrimer matrix. Sensitized RTP of a serial of diphenyl anthracene (DPA) derivatives peaked at 766 nm were observed for the first time in an aqueous solution with a maximal quantum yield of 1.4%. A ternary supramolecular assembling between the UC components and the dendrimers was formed via electrostatic interaction between the–COOH and peripheral amino groups. On one hand, it assured the efficient population of the triplet states of the fluorophore via triplet-triplet energy transfer (TTET) process; on the other hand, it restricted the motions of the fluorophores, and thus inhibited the nonradiative inactivation of the populated triplet states. These two aspects jointly contributed to the sensitized RTP of DPA units. Significantly, the microenvironment in which the annihilators resided could be regulated by adjusting the ratio of carboxyl to amino groups (–COOH/–NH2), when–COOH/–NH2 < 1, the annihilators were mainly immobilized at the periphery of the dendrimers, leading to the sensitized RTP, and when COOH/–NH2 > 1, the UC components could be partly driven to the hydrophobic cavities of the dendrimers, resulting an unprecedentedly simultaneous emission of upconverted fluorescence and down-converted phosphorescence of the annihilators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Q, Wang JY, Zeng H, Zhang LY, Chen ZN. Sci China Chem, 2022, 65: 1559–1568

    Article  CAS  Google Scholar 

  2. Li Z, Liang PZ, Ren TB, Yuan L, Zhang XB. Angew Chem Int Ed, 2023, 62: e202305742

    Article  CAS  Google Scholar 

  3. Zhang ZY, Xu WW, Xu WS, Niu J, Sun XH, Liu Y. Angew Chem Int Ed, 2020, 59: 18748–18754

    Article  CAS  Google Scholar 

  4. Chang K, Xiao L, Fan Y, Gu J, Wang Y, Yang J, Chen M, Zhang Y, Li Q, Li Z. Sci Adv, 2023, 9: eadf6757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Elbjeirami O, Rawashdeh-Omary MA, Omary MA. Res Chem Intermed, 2011, 37: 691–703

    Article  CAS  Google Scholar 

  6. Zhang Q, Fan Y, Liao Q, Zhong C, Li Q, Li Z. Sci China Chem, 2022, 65: 918–925

    Article  CAS  Google Scholar 

  7. Yang J, Fang M, Li Z. Acc Mater Res, 2021, 2: 644–654

    Article  CAS  Google Scholar 

  8. Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Angew Chem Int Ed, 2016, 55: 2181–2185

    Article  CAS  Google Scholar 

  9. Ma L, Ma X. Sci China Chem, 2022, 66: 304–314

    Article  Google Scholar 

  10. Liu R, Jiang T, Liu D, Ma X. Sci China Chem, 2022, 65: 1100–1104

    Article  CAS  Google Scholar 

  11. Liu S, Lin Y, Yan D. Chin Chem Lett, 2023, 34: 107952

    Article  CAS  Google Scholar 

  12. Bolton O, Lee K, Kim HJ, Lin KY, Kim J. Nat Chem, 2011, 3: 205–210

    Article  PubMed  CAS  Google Scholar 

  13. Zhou WL, Lin W, Chen Y, Dai XY, Liu Z, Liu Y. Chem Sci, 2022, 13: 573–579

    Article  PubMed  Google Scholar 

  14. Ma X-, Zhou X, Wu J, Shen F-, Liu Y. Adv Sci, 2022, 9: 2201182

    Article  CAS  Google Scholar 

  15. Wang J, Huang Z, Ma X, Tian H. Angew Chem Int Ed, 2020, 59: 9928–9933

    Article  CAS  Google Scholar 

  16. Huo M, Dai X-, Liu Y. Adv Sci, 2022, 9: 2201523

    Article  CAS  Google Scholar 

  17. Melnikov G, Shtykov S, Goryacheva I. Anal Chim Acta, 2001, 439: 81–86

    Article  CAS  Google Scholar 

  18. Goryacheva I, Shtykov S, Melnikov G, Fedorenko E. Environ Chem Lett, 2003, 1: 82–85

    Article  CAS  Google Scholar 

  19. Guo X, Wu W, Li Y, Zhang J, Wang L, Agren H. Chin Chem Lett, 2021, 32: 1834–1846

    Article  CAS  Google Scholar 

  20. Wei L, Yang C, Wu W. Curr Opin Green Sustain Chem, 2023, 43: 100851

    Article  CAS  Google Scholar 

  21. Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. ACS Nano, 2023, 17: 3259–3288

    Article  PubMed  CAS  Google Scholar 

  22. Yang D, Han J, Sang Y, Zhao T, Liu M, Duan P. J Am Chem Soc, 2021, 143: 13259–13265

    Article  PubMed  CAS  Google Scholar 

  23. Hoseinkhani S, Tubino R, Meinardi F, Monguzzi A. Phys Chem Chem Phys, 2015, 17: 4020–4024

    Article  PubMed  CAS  Google Scholar 

  24. Zhou Y, Castellano FN, Schmidt TW, Hanson K. ACS Energy Lett, 2020, 5: 2322–2326

    Article  CAS  Google Scholar 

  25. Zeng L, Huang L, Han J, Han G. Acc Chem Res, 2022, 55: 2604–2615

    Article  PubMed  CAS  Google Scholar 

  26. Wei L, Fan C, Rao M, Gao F, He C, Sun Y, Zhu S, He Q, Yang C, Wu W. Mater Horiz, 2022, 9: 3048–3056

    Article  PubMed  CAS  Google Scholar 

  27. Fan C, Wei L, Niu T, Rao M, Cheng G, Chruma JJ, Wu W, Yang C. J Am Chem Soc, 2019, 141: 15070–15077

    Article  PubMed  CAS  Google Scholar 

  28. Xu W, Liang W, Wu W, Fan C, Rao M, Su D, Zhong Z, Yang C. Chem Eur J, 2018, 24: 16677–16685

    Article  PubMed  CAS  Google Scholar 

  29. Lai H, Zhao T, Deng Y, Fan C, Wu W, Yang C. Chin Chem Lett, 2019, 30: 1979–1983

    Article  CAS  Google Scholar 

  30. Wei X, Liu J, Xia GJ, Deng J, Sun P, Chruma JJ, Wu W, Yang C, Wang YG, Huang Z. Nat Chem, 2020, 12: 551–559

    Article  PubMed  CAS  Google Scholar 

  31. Ji J, Wu W, Liang W, Cheng G, Matsushita R, Yan Z, Wei X, Rao M, Yuan DQ, Fukuhara G, Mori T, Inoue Y, Yang C. J Am Chem Soc, 2019, 141: 9225–9238

    Article  PubMed  CAS  Google Scholar 

  32. Fan C, Wu W, Chruma JJ, Zhao J, Yang C. J Am Chem Soc, 2016, 138: 15405–15412

    Article  PubMed  CAS  Google Scholar 

  33. Yao J, Wu W, Xiao C, Su D, Zhong Z, Mori T, Yang C. Nat Commun, 2021, 12: 2600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Angew Chem Int Ed, 2022, 61: e202203541

    Article  CAS  Google Scholar 

  35. Mi Y, Ma J, Liang W, Xiao C, Wu W, Zhou D, Yao J, Sun W, Sun J, Gao G, Chen X, Chruma JJ, Yang C. J Am Chem Soc, 2021, 143: 1553–1561

    Article  PubMed  CAS  Google Scholar 

  36. Yu X, Wu W, Zhou D, Su D, Zhong Z, Yang C. CCS Chem, 2022, 4: 1806–1814

    Article  CAS  Google Scholar 

  37. Peng C, Liang W, Ji J, Fan C, Kanagaraj K, Wu W, Cheng G, Su D, Zhong Z, Yang C. Chin Chem Lett, 2021, 32: 345–348

    Article  CAS  Google Scholar 

  38. Gao F, Yu X, Liu L, Chen J, Lv Y, Zhao T, Ji J, Yao J, Wu W, Yang C. Chin Chem Lett, 2022, 34: 107558

    Article  Google Scholar 

  39. Zhao T, Yi J, Liu C, Liang X, Shen Y, Wei L, Xie X, Wu W, Yang C. Angew Chem Int Ed, 2023, 62: e202302232

    Article  CAS  Google Scholar 

  40. Liu X, Zeng Y, Liu J, Li P, Zhang D, Zhang X, Yu T, Chen J, Yang G, Li Y. Langmuir, 2015, 31: 4386–4393

    Article  PubMed  CAS  Google Scholar 

  41. Grohn F, Klein K, Brand S. Chem Eur J, 2008, 14: 6866–6869

    Article  PubMed  Google Scholar 

  42. Willerich I, Grohn F. J Am Chem Soc, 2011, 133: 20341–20356

    Article  PubMed  CAS  Google Scholar 

  43. Ribierre JC, Ruseckas A, Cavaye H, Barcena HS, Burn PL, Samuel IDW. J Phys Chem A, 2011, 115: 7401–7405

    Article  PubMed  CAS  Google Scholar 

  44. Buczkowski A, Waliszewski D, Urbaniak P, Palecz B. Int J Pharm, 2016, 505: 1–13

    Article  PubMed  CAS  Google Scholar 

  45. Guo Q, Li G, Rao M, Wei L, Gao F, Wu W, Yang Q, Cheng G, Yang C. Dyes Pigm, 2020, 182: 108643

    Article  CAS  Google Scholar 

  46. Monguzzi A, Mezyk J, Scotognella F, Tubino R, Meinardi F. Phys Rev B, 2008, 78: 195112

    Article  Google Scholar 

  47. Hosoyamada M, Yanai N, Ogawa T, Kimizuka N. Chem Eur J, 2016, 22: 2060–2067

    Article  PubMed  CAS  Google Scholar 

  48. Aulin YV, van Sebille M, Moes M, Grozema FC. RSC Adv, 2015, 5: 107896–107903

    Article  CAS  Google Scholar 

  49. Xiao X, Tian W, Imran M, Cao H, Zhao J. Chem Soc Rev, 2021, 50: 9686–9714

    Article  PubMed  CAS  Google Scholar 

  50. Liang H, Liu X, Tang L, Mahmood Z, Chen Z, Chen G, Ji S, Huo Y. Chin Chem Lett, 2023, 34: 107515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171194, 21971169, 92056116, 21871194, 21572142), the Science & Technology Department of Sichuan Province (2022YFH0095, 2021ZYD0052), and the Fundamental Research Funds for the Central Universities (20826041D4117). Material characterizations were performed with the support of Professor Peng Wu and Hui Wang of the Analytical & Testing Center, Sichuan University, which were greatly appreciated. We also thank Feng Yang from the Comprehensive Training Platform of the Specialized Laboratory in the College of Chemistry at Sichuan University for TEM testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanhua Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1786_MOESM1_ESM.pdf

A New Sensitization Strategy for Achieving Organic RTP in Aqueous Solution: Tunable RTP and UC Emission in Supramolecular TTA-UC Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Gao, F., He, C. et al. A new sensitization strategy for achieving organic RTP in aqueous solution: tunable RTP and UC emission in supramolecular TTA-UC systems. Sci. China Chem. 66, 3546–3554 (2023). https://doi.org/10.1007/s11426-023-1786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1786-5

Navigation