Skip to main content
Log in

CO oxidation on supported platinum group metal (PGM) based nanoalloys

  • Reviews
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of carbon monoxide is widely investigated for realistic and potential uses in energy production and environmental processes. As a probe reaction to the surface properties, it gives an insight into the relationship between the structure of active phase and catalytic performance. Noble metals alloyed with certain transition metals in the form of a nanoalloy exhibit enhanced catalytic activity for various reactions, especially when simultaneous activation of oxygen and CO is involved. This article highlights some of these insights into nanoalloy catalysts in which platinum group metal (PGM) is alloyed with a second and/or third transition metal (M/M′=Co, Fe, V, Ni, Ir, etc.), for catalytic oxidation of carbon monoxide in a gas phase. Recent studies have provided important insights into how the atomic-scale structures of the nanoalloy catalysts operate synergistically in activating oxygen and maneuvering surface oxygenated species. The exploration of atomic-scale chemical/structural ordering and coordination in correlation with the catalytic oxidation properties based on findings from ex- and in-situ synchrotron X-ray techniques is emphasized; for example, high-energy X-ray diffraction coupled to atomic-pair distribution function and X-ray absorption fine-structure spectroscopic analysis. The understanding of the detailed active sites of the nanoalloys has significant implications for the design of low-cost, active, and durable catalysts for sustainable energy production and environmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong C, Regalbuto J. In: Schloegl R, Niemantsverdriet J, Eds. Comprehensive Inorganic Chemistry II. Amsterdam: Elsevier, 2013

  2. Wu J, Yang H. Accounts of chemical research platinum-based oxygen reduction electrocatalysts. Acc Chem Res, 2013, 46: 1848–1857

    Article  CAS  Google Scholar 

  3. Singh A, Xu Q. Synergistic catalysis over bimetallic alloy nano-particles. Chemcatchem, 2013, 5: 652–676

    Article  CAS  Google Scholar 

  4. Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed, 2013, 52: 8526–8544

    Article  CAS  Google Scholar 

  5. Long N, Yang Y, Thi C, Minh N, Cao Y, Nogami M. The development of mixture, alloy, and core-shell nanocatalysts with nano-material supports for energy conversion in low-temperature fuel cells. Nano Energy, 2013, 2: 636–676

    Article  Google Scholar 

  6. Ferrando R, Jellinek J, Johnston R. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev, 2008, 108: 845–910

    Article  CAS  Google Scholar 

  7. Klabunde K, Mulukutla R. In: Klabunde K, Ed. Nanoscale Materials in Chemistry. New York: John Wiley & Sons, Inc., 2001

  8. Li H, Luk Y, Mrksich M. Catalytic asymmetric dihydroxylation by gold colloids functionalized with self-assembled monolayers. Langmuir, 1999, 15: 4957–4959

    Article  CAS  Google Scholar 

  9. Ingram R, Murray R. Electroactive three-dimensional monolayers: anthraquinone omega-functionalized alkanethiolate-stabilized gold clusters. Langmuir, 1998, 14: 4115–4121

    Article  CAS  Google Scholar 

  10. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H, Snyder J, Li D, Herron J, Mavrikakis M, Chi M, More K, Li Y, Markovic N, Somorjai G, Yang P, Stamenkovic V. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343: 1339–1343

    Article  CAS  Google Scholar 

  11. Zhong C, Maye M. Core-shell assembled nanoparticles as catalysts. Adv Mater, 2001, 13: 1507–1515

    Article  CAS  Google Scholar 

  12. Qian H, Zhu M, Wu Z, Jin R. Quantum sized gold nanoclusters with atomic precision. Acc Chem Res, 2012, 45: 1470–1479

    Article  CAS  Google Scholar 

  13. Philip R, Chantharasupawong P, Qian H, Jin R, Thomas J. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett, 2012, 12: 4661–4667

    Article  CAS  Google Scholar 

  14. Cliffel A, Zamborini F, Gross S, Murray R. Mercaptoammonium-monolayer-protected, water-soluble gold, silver, and palladium clusters. Langmuir, 2000, 16: 9699–9702

    Article  CAS  Google Scholar 

  15. Liu L, Gu X, Cao Y, Yao X, Zhang L, Tang C, Gao F, Dong L. Crystal-plane effects on the catalytic properties of Au/TiO2. ACS Catal, 2013, 3: 2768–2775

    Article  CAS  Google Scholar 

  16. Kusada K, Kobayashi H, Ikeda R, Kubota Y, Takata M, Toh S, Yamamoto T, Matsumura S, Sumi N, Sato K, Nagaoka K, Kitagawa H. Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. J Am Chem Soc, 2014, 136: 1864–1871

    Article  CAS  Google Scholar 

  17. Liao M, Hu Q, Zheng J, Li Y, Zhou H, Zhong C, Chen B. Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochim Acta, 2013, 111: 504–509

    Article  CAS  Google Scholar 

  18. Duchesne P, Chen G, Zheng N, Zhang P. Local structure, electronic behavior, and electrocatalytic reactivity of CO-reduced platinum-iron oxide nanoparticles. J Phys Chem C, 2013, 117: 26324–26333

    Article  CAS  Google Scholar 

  19. Bauer J, Mullins D, Oyola Y, Overbury S, Dai S. Structure activity relationships of silica supported AuCu and AuCuPd alloy catalysts for the oxidation of CO. Catal Lett, 2013, 143: 926–935

    Article  CAS  Google Scholar 

  20. Geukens I, De Vos D. Organic transformations on metal nanoparticles: controlling activity, stability, and recyclability by support and solvent interactions. Langmuir, 2013, 29: 3170–3178

    Article  CAS  Google Scholar 

  21. Liu X, Wang A, Zhang T, Mou C. Catalysis by gold: new insights into the support effect. Nano Today, 2013, 8: 403–416

    Article  CAS  Google Scholar 

  22. Khanal S, Casillas G, Bhattarai N, Velazquez-Salazar J, Santiago U, Ponce A, Mejia-Rosales S, Jose-Yacaman M. CuS2-Passivated Au-Core, Au3Cu-shell nanoparticles analyzed by atomistic-resolution Cs-corrected STEM. Langmuir, 2013, 29: 9231–9239

    Article  CAS  Google Scholar 

  23. Leppert L, Albuquerque R, Foster A, Kummel S. Interplay of electronic structure and atomic mobility in nanoalloys of Au and Pt. J Phys Chem C, 2013, 117: 17268–17273

    Article  CAS  Google Scholar 

  24. Ting M, Navale T, Bates F, Reineke T. Precise compositional control and systematic preparation of multimonomeric statistical copolymers. Acs Macro Lett, 2013, 2: 770–774

    Article  CAS  Google Scholar 

  25. Yang L, Shan S, Loukrakpam R, Petkov V, Ren Y, Wanjala B, Engelhard M, Luo J, Yin J, Chen Y, Zhong C. Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites. J Am Chem Soc, 2012, 134: 15048–15060

    Article  CAS  Google Scholar 

  26. Petkov V, Wanjala B, Loukrakpam R, Luo J, Yang L, Zhong C, Shastri S. Pt-Au alloying at the nanoscale. Nano Lett, 2012, 12: 4289–4299

    Article  CAS  Google Scholar 

  27. Petkov V, Yang L, Yin J, Loukrakpam R, Shan S, Wanjala B, Luo J, Chapman K, Zhong C. Reactive gas environment induced structural modification of noble-transition metal alloy nanoparticles. Phys Rev Lett, 2012, 109: 125504

    Article  CAS  Google Scholar 

  28. Wanjala B, Fang B, Shan S, Petkov V, Zhu P, Loukrakpam R, Chen Y, Luo J, Yin J, Yang L, Shao M, Zhong C. Design of ternary nanoalloy catalysts: effect of nanoscale alloying and structural perfection on electrocatalytic enhancement. Chem Mater, 2012, 24: 4283–4293

    Article  CAS  Google Scholar 

  29. Yin J, Shan S, Yang L, Mott D, Malis O, Petkov V, Cai F, Ng M, Luo J, Chen B, Engelhard M, Zhong C. Gold-copper nanoparticles: nanostructural evolution and bifunctional catalytic sites. Chem Mater, 2012, 24: 4662–4674

    Article  CAS  Google Scholar 

  30. Petkov V, Shan S, Chupas P, Yin J, Yang L, Luo J, Zhong C. Noble-transition metal nanoparticle breathing in a reactive gas atmosphere. Nanoscale, 2013, 5: 7379–7387

    Article  CAS  Google Scholar 

  31. Loukrakpam R, Shan S, Petkov V, Yang L, Luo J, Zhong C. Atomic ordering enhanced electrocatalytic activity of nanoalloys for oxygen reduction reaction. J Phys Chem C, 2013, 117: 20715–20721

    Article  CAS  Google Scholar 

  32. Shan S, Luo J, Yang L, Zhong C. Nanoalloy catalysts: structural and catalytic properties. Catal Sci Technol, 2014, 4: 3570–3588

    Article  CAS  Google Scholar 

  33. Petkov V, Shastri S, Shan S, Joseph P, Luo J, Zhong C, Nakamura T, Herbani Y, Sato S. Resolving atomic ordering differences in group 11 nanosized metals and binary alloy catalysts by resonant high-energy X-ray diffraction and computer simulations. J Phys Chem C, 2013, 117: 22131–22141

    Article  CAS  Google Scholar 

  34. Shan S, Petkov V, Yang L, Mott D, Wanjala B, Cai F, Chen B, Luo J, Zhong C. Oxophilicity and structural integrity in maneuvering surface oxygenated species on nanoalloys for CO oxidation. ACS Catal, 2013, 3: 3075–3085

    Article  CAS  Google Scholar 

  35. Paulus U, Wokaun A, Scherer G, Schmidt T, Stamenkovic V, Radmilovic V, Markovic N, Ross P. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B, 2002, 106: 4181–4191

    Article  CAS  Google Scholar 

  36. Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys, 2003, 78: 563–573

    Article  CAS  Google Scholar 

  37. Yang H, Vogel W, Lamy C, Alonso-Vante N. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B, 2004, 108: 11024–11034

    Article  CAS  Google Scholar 

  38. Feldheim D, Foss Jr C. Metal Nanoparticles: Synthesis, Characterization, and Applications. New York: Marcel Dekker, Inc., 2002

    Google Scholar 

  39. Waszczuk P, Lu G, Wieckowski A, Lu C, Rice C, Masel R. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochim Acta, 2002, 47: 3637–3652

    Article  CAS  Google Scholar 

  40. Schmidt T, Gasteiger H, Behm R. Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst. Electrochem Commun, 1999, 1: 1–4

    Article  CAS  Google Scholar 

  41. Raja R, Khimyak T, Thomas J, Hermans S, Johnson B. Single-step, highly active and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds. Angew Chem Int Ed, 2001, 40: 4638–4642

    Article  CAS  Google Scholar 

  42. Peng X, Schlamp M, Kadavanich A, Alivisatos A. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc, 1997, 119: 7019–7029

    Article  CAS  Google Scholar 

  43. Galow T, Drechsler U, Hanson J, Rotello V. Highly reactive heterogeneous Heck and hydrogenation catalysts constructed through “bottom-up” nanoparticle self-assembly. Chem Comm, 2002: 1076–1077

    Google Scholar 

  44. Brust M, Walker M, Bethell D, Schiffrin D, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Comm, 1994: 801–802

    Google Scholar 

  45. Templeton A, Wuelfing W, Murray R. Monolayer-protected cluster molecules. Acc Chem Res, 2000, 33: 27–36

    Article  CAS  Google Scholar 

  46. Schmid G, Maihack V, Lantermann F, Peschel S. Ligand-stabilized metal clusters and colloids: properties and applications. J Chem Soc, Dalton Trans, 1996: 589–595

    Google Scholar 

  47. Paulus U, Endruschat U, Feldmeyer G, Schmidt T, Bonnemann H, Behm R. New PtRu alloy colloids as precursors for fuel cell catalysts. J Catal, 2000, 195: 383–393

    Article  CAS  Google Scholar 

  48. Whetten R, Khoury J, Alvarez M, Murthy S, Vezmar I, Wang Z, Stephens P, Cleveland C, Luedtke W, Landman U. Nanocrystal gold molecules. Adv Mater, 1996, 8: 428–433

    Article  CAS  Google Scholar 

  49. Huang W, Hua Q, Cao T. Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal Lett, 2014, 144: 1355–1369

    Article  CAS  Google Scholar 

  50. Niu Z, Li Y. Removal and utilization of capping agents in nano-catalysis. Chem Mater, 2014, 26: 72–83

    Article  CAS  Google Scholar 

  51. Storhoff J, Mirkin C. Programmed materials synthesis with DNA. Chem Rev, 1999, 99: 1849–1862

    Article  CAS  Google Scholar 

  52. Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989–1992

    Article  CAS  Google Scholar 

  53. Chen M, Nikles D. Synthesis, self-assembly, and magnetic properties of FexCoyPt100−xy nanoparticles. Nano Lett, 2002, 2: 211–214

    Article  CAS  Google Scholar 

  54. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4. J Catal, 1993, 144: 175–192

    Article  CAS  Google Scholar 

  55. Luo J, Njoki P, Lin Y, Wang L, Mott D, Zhong C. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen. Electrochem Commun, 2006, 8: 581–587

    Article  CAS  Google Scholar 

  56. Luo J, Kariuki N, Han L, Wang L, Zhong C, He T. Preparation and characterization of carbon-supported PtVFe electrocatalysts. Electrochim Acta, 2006, 51: 4821–4127

    Article  CAS  Google Scholar 

  57. Han L, Wu W, Kirk F, Luo J, Maye M, Kariuki N, Lin Y, Wang C, Zhong C. A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir, 2004, 20: 6019–6025

    Article  CAS  Google Scholar 

  58. Wanjala B, Fang B, Loukrakpam R, Chen Y, Engelhard M, Luo J, Yin J, Yang L, Shan S, Zhong C. Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction. ACS Catal, 2012, 2: 795–806

    Article  CAS  Google Scholar 

  59. Behafarid F, Ono L, Mostafa S, Croy J, Shafai G, Hong S, Rahman T, Bare S, Cuenya B. Electronic properties and charge transfer phenomena in Pt nanoparticles on gamma-Al2O3: size, shape, support, and adsorbate effects. Phys Chem Chem Phys., 2012, 14: 11766–11779

    Article  CAS  Google Scholar 

  60. Bazin D, Sayers D, Rehr J, Mottet C. Numerical simulation of the platinum L-III edge white line relative to nanometer scale clusters. J Phys Chem B, 1997, 101: 5332–5336

    Article  CAS  Google Scholar 

  61. Petkov V, Billinge S, Heising J, Kanatzidis M. Application of atomic pair distribution function analysis to materials with intrinsic disorder. Three-dimensional structure of exfoliated-restacked WS2: not just a random turbostratic assembly of layers. J Am Chem Soc, 2000, 122: 11571–11576

    Article  CAS  Google Scholar 

  62. Petkov V, Jeong I, Chung J, Thorpe M, Kycia S, Billinge S. High real-space resolution measurement of the local structure of Ga1-xInxAs using X-ray diffraction. Phys Rev Lett, 1999, 83: 4089–4092

    Article  CAS  Google Scholar 

  63. Waseda Y. The Structure of Noncrystalline Materials. New York: McGraw-Hill, 1980

    Google Scholar 

  64. Rietveld H. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr, 1969, 2: 45–88

    Article  Google Scholar 

  65. Oxford S, Lee P, Chupas P, Chapman K, Kung M, Kung H. Study of supported PtCu and PdAu bimetallic nanoparticles using in-situ X-ray tools. J Phys Chem C, 2010, 114: 17085–17091

    Article  CAS  Google Scholar 

  66. Egami T, Billinge S. Underneath the Braggs’ Peak. Amsterdam: Elsevier, 2003

    Google Scholar 

  67. Petkov V. Nanostructure by high-energy X-ray diffraction. Mater Today, 2008, 11: 28–38

    Article  CAS  Google Scholar 

  68. Wanjala B, Loukrakpam R, Luo J, Njoki P, Mott D, Shao M, Protsailo L, Kawamura T, Zhong C. Thermal treatment of PtNiCo electrocatalysts: effects of nanoscale strain and structure on the activity and stability for the oxygen reduction reaction. J Phys Chem C, 2010, 114: 17580–17590

    Article  CAS  Google Scholar 

  69. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric-acid fuel-cells. J Electrochem Soc, 1994, 141: 2659–2668

    Article  CAS  Google Scholar 

  70. Koh S, Leisch J, Toney M, Strasser P. Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. J Phys Chem C, 2007, 111: 3744–3752

    Article  CAS  Google Scholar 

  71. Koh S, Yu C, Mani P, Srivastava R, Strasser P. Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. J Power Sources, 2007, 172: 50–56

    Article  CAS  Google Scholar 

  72. Petkov V. 3D structure of nanosized catalysts by high-energy X-ray diffraction. Synchr Rad News, 2009, 22: 29–33

    Article  Google Scholar 

  73. Wanjala B, Luo J, Loukrakpam R, Fang B, Mott D, Njoki P, Engelhard M, Naslund H, Wu J, Wang L, Malis O, Zhong C. Nano-scale alloying, phase-segregation, and core-shell evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem Mater, 2010, 22: 4282–4294

    Article  CAS  Google Scholar 

  74. Wanjala B, Fang B, Luo J, Chen Y, Yin J, Engelhard M, Loukrakpam R, Zhong C. Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts. J Am Chem Soc, 2011, 133: 12714–12727

    Article  CAS  Google Scholar 

  75. Senanayake S, Stacchiola D, Rodriguez J. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for co oxidation and the water-gas shift reaction. Acc Chem Res, 2013, 46: 1702–1711

    Article  CAS  Google Scholar 

  76. Shan S, Petkov V, Yang L, Luo J, Joseph P, Mayzel D, Prasai B, Wang L, Engelhard M, Zhong C. Atomic-structural synergy for catalytic CO oxidation over palladium-nickel nanoalloys. J Am Chem Soc, 2014, 136: 7140–7151

    Article  CAS  Google Scholar 

  77. Haruta M. Catalysis: gold rush. Nature, 2005, 437: 1098–1099

    Article  CAS  Google Scholar 

  78. Schalow T, Brandt B, Starr D, Laurin M, Shaikhutdinov S, Schauermann S, Libuda J, Freund J. Size-dependent oxidation mechanism of supported Pd nanoparticles. Angew Chem Int Ed, 2006, 45: 3693–3697

    Article  CAS  Google Scholar 

  79. Frenkel A. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev, 2012, 41: 8163–8178

    Article  CAS  Google Scholar 

  80. Redmond E, Setzler B, Juhas P, Billinge S, Fuller T. In-situ monitoring of particle growth at PEMFC cathode under accelerated cycling conditions. Electrochem Solid St, 2012, 15: B72–B74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lefu Yang or Chuan-Jian Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Shan, S., Yang, L. et al. CO oxidation on supported platinum group metal (PGM) based nanoalloys. Sci. China Chem. 58, 14–28 (2015). https://doi.org/10.1007/s11426-014-5264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5264-y

Keywords

Navigation