Skip to main content
Log in

Influence and Removal of Capping Ligands on Catalytic Colloidal Nanoparticles

  • Perspectives
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Size- and morphology-controlled catalytic colloidal nanoparticles are emerging as novel catalysts for heterogeneous catalysis, but capping ligands adsorbed on the nanoparticle surfaces inherited from the colloidal synthesis always stand as a problem. This perspective highlights recent progress on the influences and removal of capping ligands on catalytic colloidal nanoparticles. Depending on the system, capping ligands can act as either a poison or a promoter for the capped nanoparticles and the underlying mechanisms will be discussed. Various methods for the removal of capping ligands on catalytic colloidal nanoparticles are summarized with an emphasis on a novel controlled oxidation treatment that we recently developed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34:41–81

    Article  CAS  Google Scholar 

  2. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  3. Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  4. Patzke GR, Zhou Y, Kontic R, Conrad F (2011) Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew Chem Int Ed 50:826–859

    Article  CAS  Google Scholar 

  5. Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605

    Article  CAS  Google Scholar 

  6. Musselwhite N, Somorjai GA (2013) Investigations of structure sensitivity in heterogeneous catalysis: from single crystals to monodisperse nanoparticles. Top Catal 56:1277–1283

    Article  CAS  Google Scholar 

  7. Zaera F (2013) Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6:1797–1820

    Article  CAS  Google Scholar 

  8. Lee I, Zaera F (2013) Nanoparticle shape selectivity in catalysis: butene isomerization and hydrogenation on platinum. Top Catal 56:1284–1298

    Article  CAS  Google Scholar 

  9. Huang WX (2013) Crystal plane-dependent surface reactivity and catalytic property of oxide catalysts studied with oxide nanocrystal model catalysts. Top Catal 56:1363–1376

    Article  CAS  Google Scholar 

  10. Zhou KB, Li YD (2012) Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed 51:602–613

    Article  CAS  Google Scholar 

  11. Li Y, Shen WJ (2014) Morphology-dependent nanocatalysts: rod-shaped oxides. Chem Soc Rev 43:1543–1574

    Article  Google Scholar 

  12. Chen C, Kang YJ, Huo ZY, Zhu ZW, Huang WY, Xin HLL, Snyder JD, Li DG, Herron JA, Mavrikakis M, Chi MF, More KL, Li YD, Markovic NM, Somorjai GA, Yang PD, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  Google Scholar 

  13. Hua Q, Cao T, Gu X-K, Lu J, Jiang Z, Pan X, Luo L, Li W-X, Huang W (2014) Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew Chem Int Ed 53:4856–4861

    Article  CAS  Google Scholar 

  14. Wulff G (1901) On the question of speed of growth and dissolution of crystal surfaces. Z Kristallogr 34:449–530

    CAS  Google Scholar 

  15. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231–325

    Article  CAS  Google Scholar 

  16. Bäumer M, Freund HJ (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127–198

    Article  Google Scholar 

  17. Heiz U, Schneider WD (2001) Size-selected clusters on solid surfaces. Crit Rev Solid State Mater Sci 26:251–290

    Article  CAS  Google Scholar 

  18. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver Nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  19. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  20. Xiong YJ, Chen JY, Wiley B, Xia YN, Yin YD, Li ZY (2005) Size-dependence of surface plasmon resonance and oxidation for pd nanocubes synthesized via a seed etching process. Nano Lett 5:1237–1242

    Article  CAS  Google Scholar 

  21. Xiong YJ, McLellan JM, Yin YD, Xia YN (2007) Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew Chem Int Ed 46:790–794

    Article  CAS  Google Scholar 

  22. Lim B, Xiong YJ, Xia YN (2007) A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew Chem Int Ed 46:9279–9282

    Article  CAS  Google Scholar 

  23. Niu ZQ, Li YD (2014) Removal and utilization of capping agents in nanocatalysis. Chem Mat 26:72–83

    Article  CAS  Google Scholar 

  24. Qian K, Zhai P, Xian JY, Hua Q, Chen K, Huang WX (2011) Size controlled synthesis of Pd nanoparticles inspired from the Wacker reaction and their catalytic performances. Catal Commun 15:56–59

    Article  CAS  Google Scholar 

  25. Xian JY, Hua Q, Jiang ZQ, Ma YS, Huang WX (2012) Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28:6736–6741

    Article  CAS  Google Scholar 

  26. Wang S, Qian K, Bi XZ, Huang WX (2009) Influence of speciation of aqueous HAuCl4 on the synthesis, structure, and property of Au colloids. J Phys Chem C 113:6505–6510

    Article  CAS  Google Scholar 

  27. Hua Q, Chen K, Chang SJ, Bao HZ, Ma YS, Jiang ZQ, Huang WX (2011) Reduction of Cu2O nanocrystals: reactant-dependent influence of capping ligands and coupling between adjacent crystal planes. RSC Adv 1:1200–1203

    Article  CAS  Google Scholar 

  28. Borodko Y, Habas SE, Koebel M, Yang PD, Frei H, Somorjai GA (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059

    Article  CAS  Google Scholar 

  29. Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 129:1–6

    Article  CAS  Google Scholar 

  30. Borodko Y, Lee HS, Joo SH, Zhang YW, Somorjai G (2010) Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H2 and O2 environments. J Phys Chem C 114:1117–1126

    Article  CAS  Google Scholar 

  31. Fenske D, Sonstrom P, Stover J, Wang XD, Borchert H, Parisi J, Kolny-Olesiak J, Bäumer M, Al-Shamery K (2010) Colloidally prepared Pt nanoparticles for heterogeneous gas-phase catalysis: influence of ligand shell and catalyst loading on CO oxidation activity. ChemCatChem 2:198–205

    Article  CAS  Google Scholar 

  32. Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556

    Article  CAS  Google Scholar 

  33. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  CAS  Google Scholar 

  34. Feng B, Hou ZS, Yang HM, Wang XR, Hu Y, Li H, Qiao YX, Zhao XG, Huang QF (2010) Functionalized poly(ethylene glycol)-stabilized water-soluble palladium nanoparticles: property/activity relationship for the aerobic alcohol oxidation in water. Langmuir 26:2505–2513

    Article  CAS  Google Scholar 

  35. Quintanilla A, Butselaar-Orthlieb VCL, Kwakernaak C, Sloof WG, Kreutzer MT, Kapteijn F (2010) Weakly bound capping agents on gold nanoparticles in catalysis: surface poison? J Catal 271:104–114

    Article  CAS  Google Scholar 

  36. Gross E, Liu JHC, Toste FD, Somorjai GA (2012) Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. Nat Chem 4:947–952

    Article  CAS  Google Scholar 

  37. Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, Medlin JW (2010) Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat Mater 9:853–858

    Article  CAS  Google Scholar 

  38. Marshall ST, Schwartz DK, Medlin JW (2011) Adsorption of oxygenates on alkanethiol-functionalized Pd(111) surfaces: mechanistic insights into the role of self-assembled monolayers on catalysis. Langmuir 27:6731–6737

    Article  CAS  Google Scholar 

  39. Marshall ST, Medlin JW (2011) Surface-level mechanistic studies of adsorbate–adsorbate interactions in heterogeneous catalysis by metals. Surf Sci Rep 66:173–184

    Article  CAS  Google Scholar 

  40. Schoenbaum CA, Schwartz DK, Medlin JW (2013) Controlling surface crowding on a Pd catalyst with thiolate self-assembled monolayers. J Catal 303:92–99

    Article  CAS  Google Scholar 

  41. Pang SH, Schoenbaum CA, Schwartz DK, Medlin JW (2013) Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat Commun 4:2448

    Google Scholar 

  42. Kahsar KR, Schwartz DK, Medlin JW (2014) Control of metal catalyst selectivity through specific noncovalent molecular interactions. J Am Chem Soc 136:520–526

    Article  CAS  Google Scholar 

  43. Schoenbaum CA, Schwartz DK, Medlin JW (2014) Controlling the surface environment of heterogeneous catalysts using self-assembled nonolayers. Acc Chem Res 47:1438–1445

    Article  CAS  Google Scholar 

  44. Lv JG, Shen Y, Peng LM, Guo XF, Ding WP (2010) Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem Commun 46:5909–5911

    Article  CAS  Google Scholar 

  45. Wu BH, Huang HQ, Yang J, Zheng NF, Fu G (2012) Selective hydrogenation of alpha, beta-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew Chem Int Ed 51:3440–3443

    Article  CAS  Google Scholar 

  46. Chen K, Wu HT, Hua Q, Chang SJ, Huang WX (2013) Enhancing catalytic selectivity of supported metal nanoparticles with capping ligands. Phys Chem Chem Phys 15:2273–2277

    Article  CAS  Google Scholar 

  47. Sinfelt JH (1977) Catalysis by alloys and bimetallic clusters. Acc Chem Res 10:15–20

    Article  CAS  Google Scholar 

  48. Kunz S, Schreiber P, Ludwig M, Maturi MM, Ackermann O, Tschurl M, Heiz U (2013) Rational design, characterization and catalytic application of metal clusters functionalized with hydrophilic, chiral ligands: a proof of principle study. Phys Chem Chem Phys 15:19253–19261

    Article  CAS  Google Scholar 

  49. Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758

    Article  CAS  Google Scholar 

  50. Prati L, Villa A (2014) Gold colloids: from quasi-homogeneous to heterogeneous catalytic systems. Acc Chem Res 47:855–863

    Article  CAS  Google Scholar 

  51. Yamazoe S, Koyasu K, Tsukuda T (2014) Nonscalable oxidation catalysis of gold clusters. Acc Chem Res 47:816–824

    Article  CAS  Google Scholar 

  52. Häkkinen H (2012) The gold–sulfur interface at the nanoscale. Nat Chem 4:443–455

    Article  Google Scholar 

  53. Grönbeck H, Walter M, Häkkinen H (2006) Theoretical characterization of cyclic thiolated gold clusters. J Am Chem Soc 128:10268–10275

    Article  Google Scholar 

  54. Lopez-Acevedo O, Kacprzak KA, Akola J, Häkkinen H (2010) Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat Chem 2:329–334

    Article  CAS  Google Scholar 

  55. Chen X, Häkkinen H (2013) Protected but accessible: oxygen activation by a calixarene-stabilized undecagold cluster. J Am Chem Soc 135:12944–12947

    Article  CAS  Google Scholar 

  56. Wu Z, Jiang D, Mann AKP, Mullins DR, Qiao ZA, Allard LF, Zeng C, Jin R, Overbury SH (2014) Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J Am Chem Soc 136:6111–6122

    Article  CAS  Google Scholar 

  57. Wang ZL, Petroski JM, Green TC, El-Sayed MA (1998) Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102:6145–6151

    Article  CAS  Google Scholar 

  58. Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Monodisperse platinum nanoparticles of well-defined shape: synthesise characterization, catalytic properties and future prospects. Top Catal 39:167–174

    Article  CAS  Google Scholar 

  59. Lee I, Morales R, Albiter MA, Zaera F (2008) Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proc Natl Acad Sci USA 105:15241–15246

    Article  CAS  Google Scholar 

  60. Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Tuning selectivity in catalysis by controlling particle shape. Nat Mater 8:132–138

    Article  CAS  Google Scholar 

  61. Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer JH, Schauermann S, Freund HJ (2008) Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angew Chem Int Ed 47:9289–9293

    Article  CAS  Google Scholar 

  62. Neyman KM, Schauermann S (2010) Hydrogen diffusion into palladium nanoparticles: pivotal promotion by carbon. Angew Chem Int Ed 49:4743–4746

    Article  CAS  Google Scholar 

  63. Ludwig W, Savara A, Madix RJ, Schauermann S, Freund HJ (2012) Subsurface hydrogen diffusion into Pd nanoparticles: role of low-coordinated surface sites and facilitation by carbon. J Phys Chem C 116:3539–3544

    Article  CAS  Google Scholar 

  64. Vig JR (1985) UV ozone cleaning of surfaces. J Vac Sci Technol A 3:1027–1034

    Article  CAS  Google Scholar 

  65. Baker LR, Kennedy G, Krier JM, Van Spronsen M, Onorato RM, Somorjai GA (2012) The role of an organic cap in nanoparticle catalysis: reversible restructuring of carbonaceous material controls catalytic activity of platinum nanoparticles for ethylene hydrogenation and methanol oxidation. Catal Lett 142:1286–1294

    Article  CAS  Google Scholar 

  66. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-Ozone treatment. J Phys Chem C 113:6150–6155

    Article  CAS  Google Scholar 

  67. Krier JM, Michalak WD, Baker LR, An K, Komvopoulos K, Somorjai GA (2012) Sum frequency generation vibrational spectroscopy of colloidal platinum nanoparticle catalysts: disordering versus removal of organic capping. J Phys Chem C 116:17540–17546

    Article  CAS  Google Scholar 

  68. Baker LR, Kennedy G, Van Spronsen M, Hervier A, Cai XJ, Chen SY, Wang LW, Somorjai GA (2012) Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions. J Am Chem Soc 134:14208–14216

    Article  CAS  Google Scholar 

  69. Kliewer CJ, Aliaga C, Bieri M, Huang WY, Tsung CK, Wood JB, Komvopoulos K, Somorjai GA (2010) Furan hydrogenation over Pt(111) and Pt(100) single-crystal surfaces and Pt nanoparticles from 1 to 7 nm: a kinetic and sum frequency generation vibrational spectroscopy study. J Am Chem Soc 132:13088–13095

    Article  CAS  Google Scholar 

  70. Yamada Y, Tsung CK, Huang W, Huo ZY, Habas SE, Soejima T, Aliaga CE, Somorjai GA, Yang PD (2011) Nanocrystal bilayer for tandem catalysis. Nat Chem 3:372–376

    Article  CAS  Google Scholar 

  71. Yang HZ, Zhang J, Sun K, Zou SZ, Fang JY (2010) Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew Chem Int Ed 49:6848–6851

    Article  CAS  Google Scholar 

  72. Alvarez-Puebla RA, Liz-Marzan LM (2012) Traps and cages for universal SERS detection. Chem Soc Rev 41:43–51

    Article  CAS  Google Scholar 

  73. Wang H, Tang HZ, He JH, Wang QW (2009) Fabrication of aligned ferrite nanofibers by magnetic-field-assisted electrospinning coupled with oxygen plasma treatment. Mater Res Bull 44:1676–1680

    Article  CAS  Google Scholar 

  74. Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, Carbo-Argibay E, Pazos-Perez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzan LM (2011) Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA 108:8157–8161

    Article  CAS  Google Scholar 

  75. Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2000) Electrochemical characterisation of platinum nanoparticles prepared by microemulsion: how to clean them without loss of crystalline surface structure. J Electroanal Chem 491:69–77

    Article  CAS  Google Scholar 

  76. Hua Q, Shang DL, Zhang WH, Chen K, Chang SJ, Ma YS, Jiang ZQ, Yang JL, Huang WX (2011) Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes. Langmuir 27:665–671

    Article  CAS  Google Scholar 

  77. Hua Q, Cao T, Bao HZ, Jiang ZQ, Huang WX (2013) Crystal-plane-controlled surface chemistry and catalytic performance of surfactant-free Cu2O nanocrystals. ChemSusChem 6:1966–1972

    Article  CAS  Google Scholar 

  78. Zhao YN, Jia LJ, Medrano JA, Ross JRH, Lefferts L (2013) Supported Pd catalysts prepared via colloidal method: the effect of acids. ACS Catal 3:2341–2352

    Article  CAS  Google Scholar 

  79. Naresh N, Wasim FGS, Ladewig BP, Neergat M (2013) Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J Mater Chem A 1:8553–8559

    Article  CAS  Google Scholar 

  80. Kovalenko MV, Scheele M, Talapin DV (2009) Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324:1417–1420

    Article  CAS  Google Scholar 

  81. Ansar SM, Arneer FS, Hu WF, Zou SL, Pittman CU, Zhang DM (2013) Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water. Nano Lett 13:1226–1229

    Article  CAS  Google Scholar 

  82. Rosen EL, Buonsanti R, Llordes A, Sawvel AM, Milliron DJ, Helms BA (2012) Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein’s salt. Angew Chem Int Ed 51:684–689

    Article  CAS  Google Scholar 

  83. Suehiro S, Horita K, Kumamoto K, Yuasa M, Tanaka T, Fujita K, Shimanoe K, Kida T (2014) Solution-processed Cu2ZnSnS4 nanocrystal solar cells: efficient stripping of surface insulating layers using alkylating agents. J Phys Chem C 118:804–810

    Article  CAS  Google Scholar 

  84. Freund HJ (1997) Adsorption of gases on complex solid surfaces. Angew Chem Int Ed 36:452–475

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2013CB933104), the National Natural Science Foundation of China (21173204, U1332113), and the MPG-CAS Partner Group Program of the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Hua, Q. & Cao, T. Influence and Removal of Capping Ligands on Catalytic Colloidal Nanoparticles. Catal Lett 144, 1355–1369 (2014). https://doi.org/10.1007/s10562-014-1306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1306-5

Keywords

Navigation