Skip to main content
Log in

Theoretical study of substituent effect on the charge mobility of 2,5-bis(trialkylsilylethynyl)-1,1,3,4-tetraphenylsiloles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The theoretical calculation of the charge mobility of 2,5-bis(trialkylsilylethynyl)-1,1,3,4-tetraphenylsiloles is presented. B3LYP/6-31* calculations demonstrated that these silole molecules possessed large coupling matrix elements and reorganization energies for electron and hole transfers and high electron mobilities. The bulkiness of the trialkyl substituents influenced the charge mobility of the silole molecules, with the smaller trimethyl group imparting higher charge mobility than triethyl and triisopropyl substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khabashesku VN, Balaji V, Boganov SE, Nefedov OM, Michl J. Matrix isolation of silacyclopentadienes: UV-visible and IR spectra and photochemical interconversion. J Am Chem Soc, 1994, 116: 320–329

    Article  CAS  Google Scholar 

  2. Yamaguchi S, Tamao K. Silole-containing σ- and π-conjugated compounds. J Chem Soc Dalton Trans, 1998, 3693–3702

  3. Mäkinen AJ, Uchida M, Kafafi ZH. Electronic structure of a silole derivative-magnesium thin film interface. J Appl Phys, 2004, 95: 2832–2838

    Article  Google Scholar 

  4. Murata H, Kafafi ZH, Uchida M. Efficient organic light-emitting diodes with undoped active layers based on silole derivatives Appl Phys Lett, 2002, 80: 189–191

    Article  CAS  Google Scholar 

  5. Tang BZ, Zhan X, Yu G, Lee PPS, Liu Y, Zhu D. Efficient blue emission from siloles. J Mater Chem, 2001, 11: 2974–2978

    Article  CAS  Google Scholar 

  6. Zhao Z, Chen S, Lam JWY, Jim CKW, Chan CYK, Wang Z, Lu P, Kwok HS, Ma Y, Tang BZ. Steric hindrance, electronic communication, and energy transfer in the photo- and electroluminescence processes of aggregation-induced emission luminogens. J Phys Chem C, 2010, 114: 7963–7972

    Article  CAS  Google Scholar 

  7. Chen HY, Lam JW, Luo JD, Ho YL, Tang BZ, Zhu D, Wong M, Kwok HS. Highly efficient organic light-emitting diodes with a silole-based compound. Appl Phys Lett, 2002, 81: 574–576

    Article  CAS  Google Scholar 

  8. Usta H, Lu G, Facchetti A, Marks TJ. Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. J Am Chem Soc, 2006, 128: 9034–9035

    Article  CAS  Google Scholar 

  9. Dong YQ, Lam JWY, Qin AJ, Li Z, Liu JZ, Sun JZ, Dong YP, Tang BZ. Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core. Chem Phys Lett, 2007, 446: 124–127

    Article  CAS  Google Scholar 

  10. Peng L, Wang M, Zhang G, Zhang D, Zhu D. A fluorescence turn-on detection of cyanide in aqueous solution based on the aggregation-induced emission. Org Lett, 2009, 11: 1943–1946

    Article  CAS  Google Scholar 

  11. Yu Y, Hong Y, Feng C, Liu J, Lam JWY, Faisal M, Ng KM, Luo KQ, Tang BZ. Synthesis of an AIE-active fluorogen and its application in cell imaging. Sci Chin Ser B Chem, 2009, 52: 15–19

    Article  CAS  Google Scholar 

  12. Mi B, Dong Y, Li Z, Lam JWY, Häußler M, Sung HHY, Kwok HS, Dong Y, Williams ID, Liu Y, Luo Y, Shuai Z, Zhu D, Tang BZ. Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core. Chem Commun, 2005, 3583–3585

  13. Yamaguchi S, Endo T, Uchida M, Izumizawa T, Furukawa K, Tamao K. Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2,5-diaryl-3,4-diphenylsiloles. Chem Eur J, 2000, 6: 1683–1692

    Article  CAS  Google Scholar 

  14. Luo JD, Xie ZL, Lam JWY, Cheng L, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun, 2001, 1740–1741

  15. Zhao Z, Chen S, Shen X, Mahtab F, Yu Y, Lu P, Lam JWY, Kwok HS, Tang BZ. Aggregation-induced emission, self-assembly, and electroluminescence of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl. Chem Commun, 2010, 46: 686–688

    Article  CAS  Google Scholar 

  16. Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem Commun, 2009, 4332–4353

  17. Liu J, Lam JWY, Tang BZ. Aggregation-induced emission of silole molecules and polymers: Fundamental and applications. J Inorg Organomet Polym, 2009, 19: 249–285

    Article  CAS  Google Scholar 

  18. Zhao Z, Chen S, Lam JWY, Chan CYK, Jim CKW, Wang Z, Wang C, Lu P, Kwok HS, Ma Y, Tang BZ. Luminescent tetraphenylethene-substituted silanes. Pure Appl Chem, 2010, 82: 863–870

    Article  CAS  Google Scholar 

  19. Li Z, Dong Y, Lam JWY, Sun J, Qin A, Häußler M, Dong Y, Sung HHY, Williams ID, Kwok HS, Tang BZ. Functionalized siloles: Versatile synthesis, aggregation-induced emission, and sensory and device applications. Adv Funct Mater. 2009, 19: 1–13

    Google Scholar 

  20. Zhao Z, Chen S, Lam JWY, Lu P, Zhong Y, Wong K, Kwok HS, Tang BZ. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem Commun, 2010, 46: 2221–2223

    Article  CAS  Google Scholar 

  21. Zhao Z, Wang Z, Lu P, Chan CYK, Liu D, Lam JWY, Sung HHY, Williams ID, Ma Y, Tang BZ. Structural modulation of solid-state emission of 2,5-bis(trialkylsilylethynyl)-3,4-diphenylsiloles. Angew Chem Int Ed, 2009, 48: 7608–7611

    Article  CAS  Google Scholar 

  22. Yu G, Yin SW, Liu YQ, Chen JS, Xu XJ, Sun XB, Ma DG, Zhan XW, Peng Q, Shuai ZG, Tang BZ, Zhu DB, Fang WH, Luo Y. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J Am Chem Soc, 2005, 127: 6335–6346

    Article  CAS  Google Scholar 

  23. Risko C, Kushto G P, Kafafi Z H, Brédas J L. Electronic properties of silole-based organic semiconductors. J Chem Phys, 2004, 121: 9031–9038

    Article  CAS  Google Scholar 

  24. Zhan X, Risko C, Korlyukov A, Sena F, Timofeeva TV, Antipin MY, Barlow S, Brédas JL, Marder SR. Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. J Mater Chem, 2006, 16: 3814–3822

    Article  CAS  Google Scholar 

  25. Marcus R A. Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys, 993, 65: 599–610

  26. Marcus RA, Eyring H. Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem, 1964, 15: 155–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuGuang Ma or Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Liu, D., Lam, J.W.Y. et al. Theoretical study of substituent effect on the charge mobility of 2,5-bis(trialkylsilylethynyl)-1,1,3,4-tetraphenylsiloles. Sci. China Chem. 53, 2311–2317 (2010). https://doi.org/10.1007/s11426-010-4079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4079-8

Keywords

Navigation