Skip to main content
Log in

Synergistic effects of ternary mixture formulation and process parameters optimization in a sequential approach for enhanced L-asparaginase production using agro-industrial wastes

  • Food Waste Generation and Management Strategies and Policies
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A novel ternary mixture of inexpensive and nutrient-rich agro-substrates comprising groundnut de-oiled cake, corn gluten meal, and soybean meal has been explored to enhance the L-asparaginase production in solid-state fermentation. To achieve the aim, a hybrid strategy was implemented by utilizing a combination of a mixture design and artificial neural networks. The study initiated with the judicious selection of the agro-substrates based on their low C/N content in comparison to the control using the CHNS elemental analysis. The mixture composition of soybean meal (49.0%), groundnut de-oiled cake (31.5%), and corn gluten meal (19.5%) were found optimum using the simplex lattice mixture design. The agro-industrial substrates mix revealed synergistic effects on the L-asparaginase production than either of the substrates alone. The maximum L-asparaginase activity of 141.45 ± 5.24 IU/gds was observed under the physical process conditions of 70% moisture content, autoclaving period of 30 min and 6.0 pH by adopting the machine learning–derived artificial neural network (ANN) methodology. The ANN modeling showed excellent prediction ability with a low mean squared error of 0.7, a low root mean squared error of 0.84, and a high value of 0.99 for regression coefficient. Moisture content (%) was assessed to be the most sensitive process parameter in the global sensitivity analysis. The net outcome from the two sequential optimization designs is the selection of the ideal mixture composition followed by the optimum physical process parameters. The application of the enzyme demonstrated significant cytotoxicity against leukemia cell line and therefore exhibited an anti-cancer effect. The present study reports a novel mixture combination and methodology that can be used to lower the cost and enhance the production of L-asparaginase using an agro-industrial substrate mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Acknowledgements

The authors are thankful to School of Biochemical engineering, IIT (BHU) Varanasi, India for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Deepankar Sharma and Abha Mishra. The first draft of the manuscript was written by Deepankar Sharma, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abha Mishra.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Mishra, A. Synergistic effects of ternary mixture formulation and process parameters optimization in a sequential approach for enhanced L-asparaginase production using agro-industrial wastes. Environ Sci Pollut Res 31, 17858–17873 (2024). https://doi.org/10.1007/s11356-023-26977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26977-4

Keywords

Navigation