Skip to main content

Advertisement

Log in

Solid state fermentation (SSF): diversity of applications to valorize waste and biomass

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi H, Mortazavipour SR, Setudeh M (2011) Polygalacturonase (PG) production by fungal strains using agro-industrial bioproduct in solid state fermentation. Chem Eng Res Bull 15(1):1–5. doi:10.3329/cerb.v15i1.6368

    Article  CAS  Google Scholar 

  • Adinarayana K, Ellaiah P, Srinivasulu B, Devi RB, Adinarayana G (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem 38(11):1565–1572. doi:10.1016/S0032-9592(03)00057-8

    Article  CAS  Google Scholar 

  • Ajila CM, Brar SK, Verma M, Tyagi RD, Valéro JR (2011) Solid-state fermentation of apple pomace using Phanerocheate chrysosporium—liberation and extraction of phenolic antioxidants. Food Chem 126(3):1071–1080. doi:10.1016/j.foodchem.2010.11.129

    Article  CAS  Google Scholar 

  • Angel-Cuapio A, Figueroa-Montero A, Favela-Torres E, Viniegra-González G, Perraud-Gaime I, Loera O (2015) Critical values of porosity in rice cultures of Isaria fumosorosea by adding water hyacinth: effect on conidial yields and quality. Appl Biochem Biotechnol 177(2):446–457. doi:10.1007/s12010-015-1754-4

    Article  CAS  Google Scholar 

  • Bento FM, de Oliveira CFA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255. doi:10.1016/j.micres.2004.08.005

    Article  CAS  Google Scholar 

  • Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng 22(1):49–70

    CAS  Google Scholar 

  • Buenrostro-Figueroa J, Ascacio-Valdés A, Sepúlveda L, De la Cruz R, Prado-Barragán A, Aguilar-González MA, Aguilar CN (2014) Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod Process 92(4):376–382. doi:10.1016/j.fbp.2013.08.010

    Article  CAS  Google Scholar 

  • Cavalcante RS, Lima HL, Pinto GA, Gava CA, Rodrigues S (2008) Effect of moisture on Trichoderma conidia production on corn and wheat bran by solid state fermentation. Food Bioprocess Technol 1(1):100–104. doi:10.1007/s11947-007-0034-x

    Article  Google Scholar 

  • Cheirsilp B, Kitcha S (2015) Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations. Ind Crop Prod 66:73–80. doi:10.1016/j.indcrop.2014.12.035

    Article  CAS  Google Scholar 

  • Chen HZ, Xu J, Li ZH (2007) Temperature cycling to improve the ethanol production with solid state simultaneous saccharification and fermentation. Appl Biochem Microbiol 43(1):57–60. doi:10.1134/S0003683807010103

    Article  Google Scholar 

  • Chen L, Yang X, Raza W, Luo J, Zhang F, Shen Q (2011) Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour Technol 102(4):3900–3910. doi:10.1016/j.biortech.2010.11.126

    Article  CAS  Google Scholar 

  • Coradi G, Da Visitação V, De Lima EA, Saito L, Palmieri D, Takita M, De Lima V (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann Microbiol 63(2):533–540. doi:10.1007/s13213-012-0500-1

    Article  CAS  Google Scholar 

  • Cuadra T, Fernandez FJ, Tomasini A, Barrios-González J (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46(2):216–220. doi:10.1111/j.1472-765X.2007.02285.x

    Article  CAS  Google Scholar 

  • Dey TB, Kuhad RC (2014) Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnol Rep 4:120–127. doi:10.1016/j.btre.2014.09.006

    Article  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2013) Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ind Crop Prod 41:78–84. doi:10.1016/j.indcrop.2012.04.001

    Article  CAS  Google Scholar 

  • Diaz-Godinez G, Soriano-Santos J, Augur C, Viniegra-González G (2001) Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. J Ind Microbiol Biotechnol 26(5):271–275. doi:10.1038/sj.jim.7000113

    Article  CAS  Google Scholar 

  • Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101(4):1385–1388. doi:10.1016/j.biortech.2009.09.028

    Article  CAS  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102(20):9737–9742. doi:10.1016/j.biortech.2011.08.025

    Article  CAS  Google Scholar 

  • Ellaiah P, Srinivasulu B, Adinarayana K (2004) Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem 39(5):529–534. doi:10.1016/S0032-9592(02)00059-6

    Article  CAS  Google Scholar 

  • El-Naggar MY, El-Assar SA, Abdul-Gawad SM (2009) Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J Microbiol Biotechnol 19(5):468–473. doi:10.4014/jmb.0807.457

    Article  CAS  Google Scholar 

  • Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100(23):6118–6120. doi:10.1016/j.biortech.2009.06.015

    Article  CAS  Google Scholar 

  • Fei Q, Chang HN, Shang L (2011) Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng 16(3):482–487. doi:10.1007/s12257-010-0370-y

    Article  CAS  Google Scholar 

  • Fleuri LF, de Oliveira MC, Arcuri MDLC, Capoville BL, Pereira MS, Delgado CHO, Novelli PK (2014) Production of fungal lipases using wheat bran and soybean bran and incorporation of sugarcane bagasse as a co-substrate in solid-state fermentation. Food Sci Biotechnol 23(4):1199–1205. doi:10.1007/s10068-014-0164-7

    Article  CAS  Google Scholar 

  • Freire DG, Sousa JS, Cavalcanti-Oliveira ED (2011) Biotechnological methods to produce biodiesel. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels—alternative feedstocks and conversion processes. Elsevier, New York, pp 319–337

    Google Scholar 

  • Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. Biomed Res Int. doi:10.1155/2012/373682

    Google Scholar 

  • Hariharan S, Nambisan P (2012) Optimization of lignin peroxidase, manganese peroxidase, and Lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioRes 8(1):250–271

    Article  Google Scholar 

  • He Q, Chen H (2013) Pilot-scale gas double-dynamic solid-state fermentation for the production of industrial enzymes. Food Bioprocess Technol 6(10):2916–2924. doi:10.1007/s11947-012-0956-9

    Article  CAS  Google Scholar 

  • Hölker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8(3):301–306. doi:10.1016/j.mib.2005.04.006

    Article  Google Scholar 

  • Hui L, Wan C, Hai-Tao D, Xue-Jiao C, Qi-Fa Z, Yu-Hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101(19):7556–7562. doi:10.1016/j.biortech.2010.04.027

    Article  Google Scholar 

  • Imtiaz S, Mukhtar H (2013) Production of alkaline protease by Bacillus subtilis using solid state fermentation. Afr J Microbiol Res 7(16):1558–1568. doi:10.5897/AJMR12.1845

    Article  CAS  Google Scholar 

  • Jangbua P, Laoteng K, Kitsubun P, Nopharatana M, Tongta A (2009) Gamma-linolenic acid production of Mucor rouxii by solid-state fermentation using agricultural by-products. Lett Appl Microbiol 49(1):91–97. doi:10.1111/j.1472-765X.2009.02624.x

    Article  CAS  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem 41(4):759–763. doi:10.1016/j.procbio.2005.09.013

    Article  CAS  Google Scholar 

  • Kim JS, Kassa A, Skinner M, Hata T, Parker BL (2011) Production of thermotolerant entomopathogenic fungal conidia on millet grain. J Ind Microbiol Biot 38(6):697–704. doi:10.1007/s10295-010-0850-2

    Article  CAS  Google Scholar 

  • Kim JJ, Xie L, Han JH, Lee SY (2014) Influence of additives on the yield and pathogenicity of conidia produced by solid state cultivation of an Isaria javanica isolate. Mycobiology 42(4):346–352. doi:10.5941/MYCO.2014.42.4.346

    Article  Google Scholar 

  • Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101(7):2389–2396. doi:10.1016/j.biortech.2009.11.023

    Article  Google Scholar 

  • Kuhar F, Castiglia V, Levin L (2015) Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int Biodeterior Biodegrad 104:238–243. doi:10.1016/j.ibiod.2015.06.017

    Article  CAS  Google Scholar 

  • Kumar A, Kanwar SS (2012) Lipase production in solid-state fermentation (SSF): recent developments and biotechnological applications. Dyn Biochem, Process Biotechnol Mol Biol 6(1):13–27

    Google Scholar 

  • Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem 38(12):1725–1729. doi:10.1016/S0032-9592(02)00253-4

    Article  CAS  Google Scholar 

  • Kumar D, Verma R, Bhalla TC (2010) Citric acid production by Aspergillus niger van. Tieghem MTCC 281 using waste apple pomace as a substrate. J Food Sci Technol 47(4):458–460. doi:10.1007/s13197-010-0077-2

    Article  CAS  Google Scholar 

  • Li S, Li G, Zhang L, Zhou Z, Han B, Hou W, Li T (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energy 102:260–265. doi:10.1016/j.apenergy.2012.09.060

    Article  CAS  Google Scholar 

  • Liu Y, Li C, Meng X, Yan Y (2013) Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process Technol 106:303–309. doi:10.1016/j.fuproc.2012.08.013

    Article  CAS  Google Scholar 

  • Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW (2013) Lipase from Penicillium camembertii KCCM 11268: optimization of solid state fermentation and application to biodiesel production. Korean J Chem Eng 30(2):405–412. doi:10.1007/s11814-012-0132-y

    Article  CAS  Google Scholar 

  • Martins VG, Kalil SJ, Costa JAV (2009) In situ bioremediation using biosurfactant produced by solid state fermentation. World J Microbiol Biotech 25(5):843–851. doi:10.1007/s11274-009-9955-z

    Article  CAS  Google Scholar 

  • Martins S, Teixeira JA, Mussatto SI (2013) Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves. Appl Biochem Biotechnol 171(5):1227–1239. doi:10.1007/s12010-013-0222-2

    Article  CAS  Google Scholar 

  • Mazaheri D, Shojaosadati SA, Mousavi SM, Hejazi P, Saharkhiz S (2012) Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energy 99:372–378. doi:10.1016/j.apenergy.2012.05.045

    Article  CAS  Google Scholar 

  • McKinney K, Combs J, Becker P, Humphries A, Filer K, Vriesekoop F (2015) Optimization of phytase production from Escherichia coli by altering solid-state fermentation conditions. Ferment 1(1):13–23. doi:10.3390/fermentation1010013

    Article  Google Scholar 

  • Md F (2012) Biosurfactant: production and application. J Pet Environ Biotechnol 3(124):2

    Google Scholar 

  • Mendoza-Cal A, Cuevas-Glory L, Lizama-Uc G, Ortiz-Vázquez E (2010) Naringinase production from filamentous fungi using grapefruit rind in solid state fermentation. Afr J Microbiol Res 4(19):1964–1969

    CAS  Google Scholar 

  • Mohanty SK, Behera S, Swain MR, Ray RC (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 86(5):640–644. doi:10.1016/j.apenergy.2008.08.022

    Article  CAS  Google Scholar 

  • Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A (2013) Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind Crop Prod 49:580–585. doi:10.1016/j.indcrop.2013.06.024

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24(11):509–515. doi:10.1016/j.tibtech.2006.09.005

    Article  CAS  Google Scholar 

  • Nagavalli M, Ponamgi SPD, Girijashankar V, Venkateswar Rao L (2015) Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol 60(1):44–51. doi:10.1111/lam.12332

    Article  CAS  Google Scholar 

  • Naveena BJ, Altaf M, Bhadriah K, Reddy G (2005) Selection of medium components by Plackett–Burman design for production of l (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresource Technol 96(4):485–490. doi:10.1016/j.biortech.2004.05.020

    Article  CAS  Google Scholar 

  • Neto DC, Meira JA, de Araújo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81(3):441. doi:10.1007/s00253-008-1663-3

    Article  Google Scholar 

  • Özdemir S, Matpan F, Okumus V, Dündar A, Ulutas MS, Kumru M (2012) Isolation of a thermophilic Anoxybacillus flavithermus sp. nov. and production of thermostable α-amylase under solid-state fermentation (SSF). Ann Microbiol 62(4):1367–1375. doi:10.1007/s13213-011-0385-4

    Article  Google Scholar 

  • Parfene G, Horincar V, Tyagi AK, Malik A, Bahrim G (2013) Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica. Food Chem 136(3):1345–1349. doi:10.1016/j.foodchem.2012.09.057

    Article  CAS  Google Scholar 

  • Pham TA, Kim JJ, Kim K (2010) Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology 38(2):137–143

    Article  CAS  Google Scholar 

  • Prakash GB, Padmaja V, Kiran RS (2008) Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour Technol 99(6):1530–1537. doi:10.1016/j.biortech.2007.04.031

    Article  CAS  Google Scholar 

  • Qi B, Yao R (2007) l-lactic acid production from Lactobacillus casei by solid state fermentation using rice straw. BioResources 2(3):419–429

    CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol R 62(3):597–635

    CAS  Google Scholar 

  • Reddy DSR, Latha DP, Latha KPJ (2011) Production of lovastatin by solid state fermentation by Penicillium funiculosum NCIM 1174. Drug Invent Today 3(6):75–77

    Google Scholar 

  • Robledo A, Aguilera-Carbó A, Rodríguez R, Martínez JL, Garza Y, Aguilar CN (2008) Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol 35(6):507–513. doi:10.1007/s10295-008-0309-x

    Article  CAS  Google Scholar 

  • Rodríguez Couto S (2008) Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J 3(7):859–870. doi:10.1002/biot.200800031

    Article  Google Scholar 

  • Rodríguez LA, Toro ME, Vazquez F, Correa-Daneri ML, Gouiric SC, Vallejo MD (2010) Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int J Hyd Energy 35(11):5914–5917. doi:10.1016/j.ijhydene.2009.12.112

    Article  Google Scholar 

  • Roslan AM, Yee PL, Shah UKM, Aziz SA, Hassan MA (2011) Production of bioethanol from rice straw using cellulase by local Aspergillus sp. Int J Agric Res 6(2):188–193. doi:10.3923/ijar.2011.188.193

    Article  CAS  Google Scholar 

  • Sahoo RK, Subudhi E, Kumar M (2014) Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation. Lett Appl Microbiol 58(6):610–616. doi:10.1111/lam.12235

    Article  CAS  Google Scholar 

  • Salar RK, Certik M, Brezova V (2012) Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Thamnidium elegans CCF 1456. Biotechnol Bioprocess Eng 17(1):109–116. doi:10.1007/s12257-011-0455-2

    Article  CAS  Google Scholar 

  • Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40(8):2689–2694. doi:10.1016/j.procbio.2004.12.001

    Article  CAS  Google Scholar 

  • Santa HSD, Santa ORD, Brand D, Vandenberghe LPS, Soccol CR (2005) Spore production of Beauveria bassiana from agro-industrial residues. Braz Arch Biol Techn 48:51–60. doi:10.1590/S1516-89132005000400007

    Article  Google Scholar 

  • Saratale GD, Kshirsagar SD, Sampange VT, Saratale RG, Oh SE, Govindwar SP, Oh MK (2014) Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl Biochem Biotechnol 174(8):2801–2817. doi:10.1007/s12010-014-1227-1

    Article  CAS  Google Scholar 

  • Schmidt CG, Gonçalves LM, Prietto L, Hackbart HS, Furlong EB (2014) Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem 146:371–377. doi:10.1016/j.foodchem.2013.09.101

    Article  CAS  Google Scholar 

  • Sepúlveda L, Aguilera-Carbó A, Ascacio-Valdés JA, Rodríguez-Herrera R, Martínez-Hernández JL, Aguilar CN (2012) Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochem 47(12):2199–2203. doi:10.1016/j.procbio.2012.08.013

    Article  Google Scholar 

  • Shaibani N, Ghazvini S, Andalibi MR, Yaghmaei S (2011) Ethanol production from sugarcane bagasse by means of enzymes produced by solid state fermentation method. World Acad Sci Eng Technol 59:1836–1839

    Google Scholar 

  • Sharma A, Vivekanand V, Singh RP (2008) Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support. Bioresour Technol 99(9):3444–3450. doi:10.1016/j.biortech.2007.08.006

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK, Singh RP (2003) Gluconic acid production under varying fermentation conditions by Aspergillus niger. J ChemTechnol Biotechnol 78(2–3):208–212. doi:10.1002/jctb.748

    CAS  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18. doi:10.1016/j.bej.2008.10.019

    Article  CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46(7):541–549. doi:10.1016/j.enzmictec.2010.03.010

    Article  CAS  Google Scholar 

  • Soares D, da Silva Serres JD, Corazza ML, Mitchell DA, Gonçalves AG, Krieger N (2015) Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel 159:364–372. doi:10.1016/j.fuel.2015.06.087

    Article  CAS  Google Scholar 

  • Swain MR, Mishra J, Thatoi H (2013) Bioethanol production from sweet potato (Ipomoea batatas L.) flour using co-culture of Trichoderma sp. and Saccharomyces cerevisiae in solid-state fermentation. Braz Arch Biol Technol 56(2):171–179. doi:10.1590/S1516-89132013000200002

    Article  CAS  Google Scholar 

  • Tarocco F, Lecuona RE, Couto AS, Arcas JA (2005) Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology. Appl Microbiol Biotechnol 68(4):481–488. doi:10.1007/s00253-005-1901-x

    Article  CAS  Google Scholar 

  • Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. doi:10.1016/j.bej.2013.10.013

    Article  CAS  Google Scholar 

  • Torino MI, Limón RI, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal-Valverde C, Frias J (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136(2):1030–1037. doi:10.1016/j.foodchem.2012.09.015

    Article  CAS  Google Scholar 

  • Torrado AM, Cortés S, Salgado JM, Max B, Rodríguez N, Bibbins BP, Domínguez JM (2011) Citric acid production from orange peel wastes by solid-state fermentation. Braz J Microbiol 42(1):394–409. doi:10.1590/S1517-83822011000100049

    Article  CAS  Google Scholar 

  • Toscano L, Montero G, Stoytcheva M, Gochev V, Cervantes L, Campbell H, Gil-Samaniego M (2013) Lipase production through solid-state fermentation using agro-industrial residues as substrates and newly isolated fungal strains. Biotechnol Biotechnol Eq 27(5):4074–4077. doi:10.5504/BBEQ.2012.0145

    Article  CAS  Google Scholar 

  • Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2014) Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol 189:36–45. doi:10.1016/j.jbiotec.2014.08.011

    Article  CAS  Google Scholar 

  • Vastrad BM, Neelagund SE (2012) Optimization of process parameters for rifamycin b production under solid state fermentation from Amycolatopsis mediterranean MTCC14. Int J Curr Pharm Res 4(2):101–108

    CAS  Google Scholar 

  • Vastrad BM, Neelagund SE, Iiger SR, Godbole AM, Kulkarni V (2014) Improved rifamycin B production by Nocardia mediterranei MTCC 14 under solid-state fermentation through process optimization. Biochem Res Int. doi:10.1155/2014/621309

    Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF (2015) Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1. Ann Microbiol 65(1):129–142. doi:10.1007/s13213-014-0844-9

    Article  CAS  Google Scholar 

  • Viniegra-González G, Favela-Torres E (2006) Why solid-state fermentation seems to be resistant to catabolite repression? Food Technol Biotechnol 44(3):397–406

    Google Scholar 

  • Wang EQ, Li SZ, Tao L, Geng X, Li TC (2010) Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energy 87(9):2839–2845. doi:10.1016/j.apenergy.2009.05.032

    Article  CAS  Google Scholar 

  • Xiao Y, Xing G, Rui X, Li W, Chen X, Jiang M, Dong M (2014) Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Funct Foods 10:210–222. doi:10.1016/j.jff.2014.06.008

    Article  CAS  Google Scholar 

  • Yadegary M, Hamidi A, Alavi SA, Khodaverdi E, Yahaghi H, Sattari S, Yahaghi E (2013) Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi method. Jundishapur J Microbiol 6(9):e7625. doi:10.5812/jjm.7625

    Article  Google Scholar 

  • Yang SS, Ling MY (1989) Tetracycline production with sweet potato residue by solid state fermentation. Biotechnol Bioeng 33(8):1021–1028. doi:10.1002/bit.260330811

    Article  CAS  Google Scholar 

  • Yu J, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89(11):1056–1059. doi:10.1016/j.fuproc.2008.04.008

    Article  CAS  Google Scholar 

  • Zhang J, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166(4):1034–1046. doi:10.1007/s12010-011-9491-9

    Article  CAS  Google Scholar 

  • Zhihui BAI, Bo JIN, Yuejie I, Jian CHEN, Zuming LI (2008) Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci 20(3):353–358. doi:10.1016/S1001-0742(08)60055-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hernández-Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizardi-Jiménez, M.A., Hernández-Martínez, R. Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech 7, 44 (2017). https://doi.org/10.1007/s13205-017-0692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0692-y

Keywords

Navigation