Skip to main content

Advertisement

Log in

Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nutrient fertilization plays a major role in improving crop productivity and maintaining soil fertility. In the last few decades, the productivity of current agricultural practices highly depends on the use of chemical fertilizers. Major drawback of traditional fertilizers is their low crop nutrient use efficiency and high loss into water. Nanomaterial in agriculture is a multipurpose tool for increasing growth, development, and yield of plants. Nanotechnology facilitates the amplifying of agriculture production by reducing relevant losses and improving the input efficiency. Nanotechnology has emerged as an attractive field of research and has various agriculture applications, especially the use of nano-agrochemicals to increase nutrient use efficiency and agricultural yield. Nanofertilizers are more effective as compared to chemical fertilizers due to their cost-efficient, eco-friendly, non-toxic, and more stable in nature. Overall, this chapter focuses on synthesis of nanofertilizers through physical, chemical, and biological methods. This chapter will also explore the use of nano-enabled fertilizers to enhance the nutrient use efficiency for sustainable crop production, and global food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abigail EA, Chidambaram R (2017) Nanotechnology in herbicide resistance. Nanostructured materials: fabrication to applications. IntechOpen, Rijeka, 207–212

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmed T, Noman M, Luo J, Muhammad S, Shahid M, Ali MA, Zhang M, Li B (2021a) Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. Int J Biol Macromol 168:834–845

    Article  CAS  Google Scholar 

  • Ahmed T, Noman M, Shahid M, Shahid MS, Li B (2021b) Antibacterial potential of green magnesium oxide nanoparticles against rice pathogen Acidovorax oryzae. Mater Lett 282:128839

    Article  CAS  Google Scholar 

  • Ahmed T, Ren H, Noman M, Shahid M, Liu M, Ali MA, Zhang J, Tian Y, Qi X, Li B (2021c) Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact 21:100281

    Article  CAS  Google Scholar 

  • Ahmed T, Shahid M, Noman M, Niazi MBK, Mahmood F, Manzoor I, Zhang Y, Li B, Yang Y, Yan C (2020) Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9:160

    Article  CAS  Google Scholar 

  • Ali M, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum M, Wang Y, An Q, Sun G, Li B (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10:1146

    Article  CAS  Google Scholar 

  • Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, Al-Asmakh M, Abdel-Aziz H, Cenciarelli C (2016) Human microbiome and its association with health and diseases. J Cell Physiol 231:1688–1694

    Article  CAS  Google Scholar 

  • Ashkavand P, Zarafshar M, Tabari M, Mirzaie J, Nikpour A, Bordbar SK, Struve D, Striker G (2018) Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (Rosaceae). Boletín De La Sociedad Argentina De Botánica 53:207–219

    Article  Google Scholar 

  • Atwood D, Paisley-Jones C (2017) Pesticides industry sales and usage: 2008–2012 market estimates. US Environmental Protection Agency, Washington, DC 20460

  • Barbosa AF, de Carvalhoa MG, Smith RE, Sabaa-Srur AU (2016) Spilanthol: occurrence, extraction, chemistry and biological activities. Rev Bras 26:128–133

    CAS  Google Scholar 

  • Bernela M, Rani R, Malik P, Mukherjee TK (2021) Nanofertilizers: applications and future prospects, nanotechnology: principles and applications, Routledge pp 289–332

  • Bhainsa KC, D’souza S (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bhat VS, Kanagavalli P, Sriram G, John NS, Veerapandian M, Kurkuri M, Hegde G (2020) Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. J Energy Storage 32:101829

    Article  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles-a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493

    CAS  Google Scholar 

  • Bilal M, Jing Z, Zhao Y, Iqbal HM (2019) Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal Agric Biotechnol 19:101174

    Article  Google Scholar 

  • Blume M, Emery VJ, Griffiths RB (1971) Ising model for the λ transition and phase separation in He 3-He 4 mixtures. Phys Rev Appl 4:1071

    Google Scholar 

  • Boddolla S, Thodeti S (2018) A review on characterization techniques of nanomaterials. IJESM 7:169–175

    Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15:6357–6372

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromol 10:87–94

    Article  CAS  Google Scholar 

  • Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55:1641–1647

    Article  CAS  Google Scholar 

  • Caron P, y de Loma-Osorio GF, Nabarro D, Hainzelin E, Guillou M, Andersen I, Arnold T, Astralaga M, Beukeboom M, Bickersteth S (2018) Food systems for sustainable development: proposals for a profound four-part transformation. Agron Sustain Dev 38:41

    Article  Google Scholar 

  • Chen J, Liu X, Wang C, Yin S-S, Li X-L, Hu W-J, Simon M, Shen Z-J, Xiao Q, Chu C-C (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182

    Article  CAS  Google Scholar 

  • Chen YW, Lee HV, Juan JC, Phang S-M (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–91

    Article  CAS  Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives, Nanotechnology and plant sciences. Springer, pp 55–75

  • Ditta A, Arshad M (2016) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5:209–229

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Dumbrepatil AB, Choi JH, Park JT, Kim MJ, Kim TJ, Woo EJ, Park KH (2010) Structural features of the Nostoc punctiforme debranching enzyme reveal the basis of its mechanism and substrate specificity. Proteins: Struct Funct Bioinf 78:348–356

    Article  CAS  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture, Microbial inoculants in sustainable agricultural productivity, Springer 271–288

  • Fincheira P, Tortella G, Duran N, Seabra AB, Rubilar O (2020) Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit Rev Biotechnol 40:15–30

    Article  CAS  Google Scholar 

  • Foote RS, Lee JW (2009) Micro and nano technologies in bioanalysis: Methods Protoc, Springer

  • Gao Z, Zhang L (2006) Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai, China. Estuar Coast Shelf Sci 69:217–224

    Article  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780

    Article  Google Scholar 

  • Gardea-Torresdey J, Parsons J, Gomez E, Peralta-Videa J, Troiani H, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Ghorbani HR (2014) A review of methods for synthesis of Al nanoparticles. Orient J Chem 30:1941–1949

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  Google Scholar 

  • Grillo R, de Jesus MB, Fraceto LF (2018) Environmental impact of nanotechnology: analyzing the present for building the future. Front Environ Sci 6:34

    Article  Google Scholar 

  • Grillo R, Fraceto LF, Amorim MJ, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q (2020) Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J Hazard Mater 124148

  • Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R (2021) Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials 11:2033

    Article  CAS  Google Scholar 

  • Hassanisaadi M, Barani M, Rahdar A, Heidary M, Thysiadou A, Kyzas GZ (2022) Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul 1–44

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives, New pesticides and soil sensors, Elsevier pp 193–225

  • Heydari M, Yousefi AR, Nikfarjam N, Rahdar A, Kyzas GZ, Bilal M (2021) Plant-based nanoparticles prepared from protein containing tribenuron-methyl: fabrication, characterization, and application. Chem Biol Technol Agric 8:1–11

    Article  Google Scholar 

  • Hazrati H, Saharkhiz MJ, Niakousari M, Moein M (2017) Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol Environ Saf 142:423–430

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • He X, Hwang H-M (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681

    Article  CAS  Google Scholar 

  • Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR, Gilbertson LM, Giraldo JP, Kinsella JM, Landry MP (2020) Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food 1:416–425

    Article  CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Qayyum MF, Wang H, Rinklebe J (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf 173:156–164

    Article  CAS  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Bio Med Res Int 2013

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang X, Pei L, Yue S, Ma L, Zhou L, Huang Z, He Y, Gao J (2018) Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor. Chem Eng J 339:547–556

    Article  CAS  Google Scholar 

  • Kadirsoy S, Atar N, Yola ML (2020) Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J Chem 44:6524–6532

    Article  CAS  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085

    Article  CAS  Google Scholar 

  • Kemp MM, Kumar A, Mousa S, Park T-J, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ (2009) Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromol 10:589–595

    Article  CAS  Google Scholar 

  • Khan M (2016) Nano-titanium dioxide (nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J Plant Sci 11:1–11

    CAS  Google Scholar 

  • Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M (2019) The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res 26:19859–19870

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kogure K (2007) Development of a novel artificial gene delivery system multifunctional envelope-type nano device for gene therapy. Yakugaku Zasshi: J Phys Soc Japan 127:1685

    Article  CAS  Google Scholar 

  • Konate A, Wang Y, He X, Adeel M, Zhang P, Ma Y, Ding Y, Zhang J, Yang J, Kizito S (2018) Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicol Environ Saf 165:547–554

    Article  CAS  Google Scholar 

  • Kwak S-Y, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 10:113–140

    Article  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc b: Biol Sci 363:815–830

    Article  CAS  Google Scholar 

  • Lattanzio VM, Nivarlet N (2017): Multiplex dipstick immunoassay for semiquantitative determination of fusarium mycotoxins in oat, Oat. Springer, pp 137–142

  • Laudenslager MJ, Schiffman JD, Schauer CL (2008) Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromol 9:2682–2685

    Article  CAS  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  Google Scholar 

  • Li C, Yan B (2020) Opportunities and challenges of phyto-nanotechnology. Environ Sci Nano 7:2863–2874

    Article  CAS  Google Scholar 

  • Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA (2016) Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 78:1–237

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:1–6

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    Article  CAS  Google Scholar 

  • Ma C, White JC, Zhao J, Zhao Q, Xing B (2018) Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annu Rev Food Sci Technol 9:129–153

    Article  CAS  Google Scholar 

  • Ma Y, Li N, Yang C, Yang X (2005) One-step synthesis of amino-dextran-protected gold and silver nanoparticles and its application in biosensors. Anal Bioanal Chem 382:1044–1048

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke S, Khanna A (2011): Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011

  • Mafune F, Kohno J-y, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107:4218–4223

    Article  CAS  Google Scholar 

  • Makarenko N, Rudnytska L, Bondar V (2016) Peculiarities of ecotoxicological assessment nanoagrochemicals used in crop production. Ann Agric Sci 14:35–41

    Google Scholar 

  • Marcandalli J, Fiala B, Ols S, Perotti M, de van der Schueren W, Snijder J, Hodge E, Benhaim M, Ravichandran R, Carter L (2019) Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176(1420–1431):e17

    Google Scholar 

  • Mane PC, Shinde MD, Varma S, Chaudhari BP, Fatehmulla A, Shahabuddin M, Amalnerkar DP, Aldhafiri AM, Chaudhari RD (2020) Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci Rep 10:1–14

    Article  Google Scholar 

  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G (2021) Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ 145221

  • Mattiello EM, Ruiz HA, Neves JC, Ventrella MC, Araújo WL (2015) Zinc deficiency affects physiological and anatomical characteristics in maize leaves. J Plant Physiol 183:138–143

    Article  CAS  Google Scholar 

  • Mehta C, Srivastava R, Arora S, Sharma A (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:1–10

    Google Scholar 

  • McLafferty FW, Stauffer DB (1989) The Wiley/NBS registry of mass spectral data, 1. Wiley, New York

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  Google Scholar 

  • Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–551

    Article  CAS  Google Scholar 

  • Montazer M, Shamei A, Alimohammadi F (2014) Synthesis of nanosilver on polyamide fabric using silver/ammonia complex. Mater Sci Eng C 38:170–176

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J, Tyagi A, Kale S (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  Google Scholar 

  • Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK (2016) A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol 46:443–466

    Article  CAS  Google Scholar 

  • Murty BS, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer Science & Business Media

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79

    Article  CAS  Google Scholar 

  • Navarro-León E, Albacete A, de la Torre-González A, Ruiz JM, Blasco B (2016) Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry 130:85–89

    Article  Google Scholar 

  • Najeeb J, Farwa U, Ishaque F, Munir H, Rahdar A, Nazar MF, Zafar MN (2021) Surfactant stabilized gold nanomaterials for environmental sensing applications–a review. Environ Res 112644

  • Nekrasova G, Ushakova O, Ermakov A, Uimin M, Byzov I (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecosyst Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma reesei. J Biotechnol 37:193–200

    Article  CAS  Google Scholar 

  • Noman M, Ahmed T, Hussain S, Niazi MBK, Shahid M, Song F (2020) Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. J Hazard Mater 398:123175

    Article  CAS  Google Scholar 

  • Noreen S, Fatima Z, Ahmad S, Ashraf M (2018) Foliar application of micronutrients in mitigating abiotic stress in crop plants, Plant Nutrients and Abiotic Stress Tolerance. Springer, pp 95–117

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  Google Scholar 

  • Okey-Onyesolu CF, Hassanisaadi M, Bilal M, Barani M, Rahdar A, Iqbal J, Kyzas GZ (2021) Nanomaterials as nanofertilizers and nanopesticides: an overview. ChemistrySelect 6:8645–8663

    Article  CAS  Google Scholar 

  • Palmqvist NM, Seisenbaeva GA, Svedlindh P, Kessler VG (2017) Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12:1–9

    Article  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotech 5:1

    Article  Google Scholar 

  • Parikh RY, Singh S, Prasad B, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Bio Chem 9:1415–1422

    Article  CAS  Google Scholar 

  • Park Y, Hong Y, Weyers A, Kim Y, Linhardt R (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    Article  CAS  Google Scholar 

  • Patra S, Mishra P, Mahapatra S, Mithun S (2016) Modelling impacts of chemical fertilizer on agricultural production: a case study on Hooghly district, West Bengal, India. EESM 2:1–11

    Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  Google Scholar 

  • Prakash NU, Bhuvaneswari S, Prabha S, Kavitha K, Sandhya K, Sathyabhuvaneshwari P, Bharathiraja B (2014) Green synthesis of silver nanoparticles using airborne actinomycetes. Int J Chem Tech Res 6:4123–4127

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306

    Article  CAS  Google Scholar 

  • Rastogi A (2017) A mini review practice of formulations of nanoparticles. Int J Chem Synth Chem React 3:1–7

    CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  • Renn SC, Armstrong JD, Yang M, Wang Z, An X, Kaiser K, Taghert PH (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41:189–207

    Article  CAS  Google Scholar 

  • Rizwan K, Rahdar A, Bilal M, Iqbal HM (2022) MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. Chemosphere 291:132820

    Article  CAS  Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  Google Scholar 

  • Sadi MH, Bonjar GHS (2017) Plants used in folkloric medicine of Iran are exquisite bio-resources in production of silver nanoparticles. IET Nanobiotechnol 11:300–309

    Article  Google Scholar 

  • Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  CAS  Google Scholar 

  • Sampathkumar K, Tan KX, Loo SCJ (2020) Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. Iscience 101055

  • Samrot AV, Sahithya CS, Selvarani J, Purayil SK, Ponnaiah P (2020) A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr Opin Green Sustain Chem 100042

  • Sargazi S, Fatima I, Kiani MH, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R (2022) Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: a comprehensive review. Int J Biol Macromol 206:115–147

    Article  CAS  Google Scholar 

  • Satyanarayana T, Reddy SS (2018) A review on chemical and physical synthesis methods of nanomaterials. Int J Res Appl Sci Eng Technol 6:2885–2889

    Article  Google Scholar 

  • Schwab F, Rothen-Rutishauser B, Petri-Fink A (2020) When plants and plastic interact. Nat Nanotechnol 15:729–730

    Article  CAS  Google Scholar 

  • Schwartz LM, Norsworthy JK, Young BG, Bradley KW, Kruger GR, Davis VM, Steckel LE, Walsh MJ (2016) Tall waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) seed production and retention at soybean maturity. Weed Technol 30:284–290

    Article  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Sharonova N, Yapparov AK, Khisamutdinov NS, Ezhkova A, Yapparov I, Ezhkov V, Degtyareva I, Babynin E (2015) Nanostructured water-phosphorite suspension is a new promising fertilizer. Nanotechnol Russ 10:651–661

    Article  CAS  Google Scholar 

  • Singh H, Sharma A, Kumar S, Arya SK, Bhardwaj N, Khatri M (2020) Recent advances in applications of nano-agrochemicals for sustainable agricultural development. Environ Sci Process Impacts

  • Sintubin L, De Windt W, Dick J, Mast J, Van Der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  CAS  Google Scholar 

  • Singh S, Husen A (2019) Role of nanomaterials in the mitigation of abiotic stress in plants, Nanomaterials and plant potential, Springer, pp 441–471

  • Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. J Crop Prot 24:601–613

    Article  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition, Nanotechnologies in food and agriculture. Springer, pp 69–80

  • Suresh R, Borkar S, Sawant V, Shende V, Dimble S (2010) Nanoclay drug delivery system. Int J Pharm Sci Res 3:901–905

    CAS  Google Scholar 

  • Tanaka M, Fernández-del Castillo C, Adsay V, Chari S, Falconi M, Jang J-Y, Kimura W, Levy P, Pitman MB, Schmidt CM (2012) International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 12:183–197

    Article  Google Scholar 

  • Tarafdar J, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res J 3:257–262

    Article  CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:1–8

    Article  Google Scholar 

  • Teo AR, Choi H, Valenstein M (2013) Social relationships and depression: ten-year follow-up from a nationally representative study. PLoS One 8:e62396

    Article  CAS  Google Scholar 

  • Tesfahunegn GB, Gebru TA (2020) Smallholder farmers’ level of understanding on the impacts of climate change on water resources in northern Ethiopia catchment. GeoJournal 1–19

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam C-w, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y (2019a) Trifluoroacetate induced small-grained CsPbBr 3 perovskite films result in efficient and stable light-emitting devices. Nat Commun 10:1–10

    Google Scholar 

  • Wang Q, Wang Z, Awasthi MK, Jiang Y, Li R, Ren X, Zhao J, Shen F, Wang M, Zhang Z (2016) Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour Technol 220:297–304

    Article  CAS  Google Scholar 

  • Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  • Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8:285

    Article  CAS  Google Scholar 

  • Wu D, Wu M, Yang J, Zhang H, Xie K, Lin C-T, Yu A, Yu J, Fu L (2019) Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing. Mater Lett 236:412–415

    Article  CAS  Google Scholar 

  • Yan X, Kong D, Jin R, Zhao X, Li H, Liu F, Lin Y, Lu G (2019) Fluorometric and colorimetric analysis of carbamate pesticide via enzyme-triggered decomposition of gold nanoclusters-anchored MnO2 nanocomposite. Sens Actuators B Chem 290:640–647

    Article  CAS  Google Scholar 

  • Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ 49:299–307

    Article  Google Scholar 

  • Wang Y, Lin Y, Xu Y, Yin Y, Guo H, Du W (2019b) Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ Pollut Bioavailab 31:80–84

    Article  CAS  Google Scholar 

  • Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi H-K, Arshad M (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    Article  CAS  Google Scholar 

  • Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S (2019) Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci 289:110270

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Key Research and Development Program of Zhejiang Province (No. 2019C02011), Zhejiang Provincial Natural Science Foundation (No. LY21C130006), and Jiangsu Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP).

Author information

Authors and Affiliations

Authors

Contributions

Farwa Basit: conceptualization, investigation, writing—original draft. Yajing Guan and Xinqiang Liang: conceptualization, investigation. Sana Asghar: validation, writing—reviewing, editing. Temoor Ahmed and Usman Ijaz: investigation, formal analysis. Muhammad Noman: funding acquisition. Jin Hu: investigation. Farwa Basit and Yajing Guan: writing—reviewing and editing.

Corresponding author

Correspondence to Yajing Guan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, F., Asghar, S., Ahmed, T. et al. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. Environ Sci Pollut Res 29, 51281–51297 (2022). https://doi.org/10.1007/s11356-022-20950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20950-3

Keywords

Navigation