Skip to main content

Advertisement

Log in

Advanced research tools for fungal diversity and its impact on forest ecosystem

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta’omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abarenkov K, Somervuo P, Nilsson RH et al (2018) Protax-fungi: a web-based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. New Phytol 220:517–525

    Article  CAS  Google Scholar 

  • A Abdelfattah MG Li Destri Nicosia SO Cacciola et al 2015 Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea) PLoS ONE 10https://doi.org/10.1371/journal.pone.0131069

  • AbuQamar SF, Moustafa K, Tran L-SP (2016) ‘Omics’ and plant responses to Botrytis cinerea. Front Plant Sci 7:1658

    Article  Google Scholar 

  • Adnan M, Islam W, Shabbir A et al (2019) Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 129:7–18. https://doi.org/10.1016/j.micpath.2019.01.042

    Article  CAS  Google Scholar 

  • Albornoz FE, Teste FP, Lambers H et al (2016) Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence. Mol Ecol 25:4919–4929. https://doi.org/10.1111/mec.13778

    Article  CAS  Google Scholar 

  • Alzarhani AK, Clark DR, Underwood GJC et al (2019) Are drivers of root-associated fungal community structure context specific? ISME J 13:1330–1344. https://doi.org/10.1038/s41396-019-0350-y

    Article  Google Scholar 

  • Bachelot B, Uriarte M, Zimmerman JK et al (2016) Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests. Ecol Appl 26:1881–1895

    Article  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK et al (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237. https://doi.org/10.1038/s41586-018-0386-6

    Article  CAS  Google Scholar 

  • Bai Z, Wu X, Lin J-J et al (2019) Litter-, soil- and C: N-stoichiometry-associated shifts in fungal communities along a subtropical forest succession. CATENA 178:350–358

    Article  CAS  Google Scholar 

  • Bálint M, Bartha L, O’Hara RB et al (2015) Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol 24:235–248. https://doi.org/10.1111/mec.13018

    Article  CAS  Google Scholar 

  • Bastias BA, Anderson IC, Xu Z, Cairney JWG (2007) RNA- and DNA-based profiling of soil fungal communities in a native Australian eucalypt forest and adjacent Pinus elliottii plantation. Soil Biol Biochem 39:3108–3114. https://doi.org/10.1016/j.soilbio.2007.06.022

    Article  CAS  Google Scholar 

  • Belanger N, Collin A, Khlifa R, Lebel-Desrosiers S (2021) Balsam fir and American beech influence soil respiration rates in opposite directions in a sugar maple forest near its northern range limit. Front Forests Global Change 4:51

    Article  Google Scholar 

  • Berg B, McClaugherty C (2014) Plant litter: decomposition, humus formation, carbon sequestration

  • Bergeron M-J, Feau N, Stewart D et al (2019) Genome-enhanced detection and identification of fungal pathogens responsible for pine and poplar rust diseases. PloS one 14:e0210952

    Article  CAS  Google Scholar 

  • Bi Y, Xie L, Wang J et al (2019) Impact of host plants, slope position and subsidence on arbuscular mycorrhizal fungal communities in the coal mining area of north-central China. J Arid Environ 163:68–76

    Article  Google Scholar 

  • Blumenstein K, Albrectsen BR, Martín JA et al (2015) Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. Biocontrol 60:655–667. https://doi.org/10.1007/s10526-015-9668-1

    Article  Google Scholar 

  • Bödeker ITM, Lindahl BD, Olson Å, Clemmensen KE (2016) Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct Ecol 30:1967–1978

    Article  Google Scholar 

  • Bödeker ITM, Nygren CMR, Taylor AFS et al (2009) Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–1395. https://doi.org/10.1038/ismej.2009.77

    Article  CAS  Google Scholar 

  • S Branco TD Bruns I Singleton 2013 Fungi at a small scale: spatial zonation of fungal assemblages around single trees PLoS ONE 8https://doi.org/10.1371/journal.pone.0078295

  • Brasier CM, Webber JF (2019) Is there evidence for post-epidemic attenuation in the Dutch elm disease pathogen Ophiostoma novo-ulmi? Plant Pathol 68:921–929

    Article  Google Scholar 

  • Brunetti AE, Neto FC, Vera MC et al (2018) An integrative omics perspective for the analysis of chemical signals in ecological interactions. Chem Soc Rev 47:1574–1591

    Article  CAS  Google Scholar 

  • Burgess TI, Scott JK, Mcdougall KL et al (2017) Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob Change Biol 23:1661–1674

    Article  Google Scholar 

  • Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803. https://doi.org/10.1016/j.soilbio.2010.12.014

    Article  CAS  Google Scholar 

  • Buschbom J (2021) Genomic patterns and the evolutionary origin of an invasive fungal pathogen (Hymenoscyphus fraxineus) in Europe. Basic and Applied Ecology

  • Carrino-Kyker SR, Kluber LA, Petersen SM, et al (2016) Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiology Ecology 92:fiw024

  • LE Castañeda O Barbosa 2017 Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests PeerJ 2017https://doi.org/10.7717/peerj.3098

  • Chalkowski K, Lepczyk CA, Zohdy S (2018) Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends Parasitol 34:655–663

    Article  Google Scholar 

  • VB Chaudhary MA Rúa A Antoninka et al 2016 MycoDB, a global database of plant response to mycorrhizal fungi Scientific Data 3https://doi.org/10.1038/sdata.2016.28

  • Chen B, Nayuki K, Kuga Y, et al (2018a) Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes and environments ME18010

  • Chen L, Mi X, Ren H, et al (2019) Differential soil fungus accumulation and density dependence of trees in a subtropical forest. j 366: https://doi.org/10.1126/science.aau1361

  • Chen M, Arato M, Borghi L et al (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1270. https://doi.org/10.3389/fpls.2018.01270

    Article  Google Scholar 

  • Chen W, Xu R, Wu Y et al (2018) Plant diversity is coupled with beta not alpha diversity of soil fungal communities following N enrichment in a semi-arid grassland. Soil Biol Biochem 116:388–398

    Article  CAS  Google Scholar 

  • Cheng K, Yu S (2020) Neighboring trees regulate the root-associated pathogenic fungi on the host plant in a subtropical forest. Ecol Evol 10:3932–3943

    Article  Google Scholar 

  • Chomnunti P, Hongsanan S, Aguirre-Hudson B et al (2014) The sooty moulds. Fungal Diversity 66:1–36. https://doi.org/10.1007/s13225-014-0278-5

    Article  Google Scholar 

  • Clausing S, Likulunga LE, Janz D et al (2021) Impact of nitrogen and phosphorus addition on resident soil and root mycobiomes in beech forests. Biol Fertil Soils 57:1031–1052

    Article  CAS  Google Scholar 

  • M Cleary D Nguyen D Marčiulyniene et al 2016 Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphusfraxineus in its native environment Sci Rep 6https://doi.org/10.1038/srep21895

  • Cobb RC, Rizzo DM (2016) Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen. Ecosystems 19:1478–1490. https://doi.org/10.1007/s10021-016-0017-8

    Article  CAS  Google Scholar 

  • Connell J (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations 298:298–312

    Google Scholar 

  • Crawford KM, Bauer JT, Comita LS et al (2019) When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol Lett 22:1274–1284

    Article  Google Scholar 

  • Creamer RE, Hannula SE, Leeuwen JPV et al (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124. https://doi.org/10.1016/j.apsoil.2015.08.006

    Article  Google Scholar 

  • EM Datlof AS Amend K Earl et al 2017 Uncovering unseen fungal diversity from plant DNA banks PeerJ 2017https://doi.org/10.7717/peerj.3730

  • Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. https://doi.org/10.1126/science.aab1161

    Article  CAS  Google Scholar 

  • J Davison M Öpik M Zobel et al 2012 Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season PLoS ONE 7https://doi.org/10.1371/journal.pone.0041938

  • de Muinck EJ, Trosvik P, Gilfillan GD et al (2017) A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome 5:1–15

    Article  Google Scholar 

  • de Oliveira TB, de Lucas RC, de Scarcella AS, A, et al (2020) Fungal communities differentially respond to warming and drought in tropical grassland soil. Mol Ecol 29:1550–1559

    Article  Google Scholar 

  • de Vries FT, Wallenstein MD (2017) Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. J Ecol 105:913–920

    Article  Google Scholar 

  • Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits? Fungal Diversity 60:125–135. https://doi.org/10.1007/s13225-013-0240-y

    Article  Google Scholar 

  • Della Monica IF, Saparrat MCN, Godeas AM, Scervino JM (2015) The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol 17:10–17. https://doi.org/10.1016/j.funeco.2015.04.004

    Article  Google Scholar 

  • Deveautour C, Donn S, Bennett AE et al (2021) Variability of arbuscular mycorrhizal fungal communities within the root systems of individual plants is high and influenced by host species and root phosphorus. Pedobiologia 84:150691

    Article  Google Scholar 

  • Deveautour C, Power SA, Barnett KL et al (2020) Temporal dynamics of mycorrhizal fungal communities and co-associations with grassland plant communities following experimental manipulation of rainfall. J Ecol 108:515–527

    Article  Google Scholar 

  • Dissanayake AJ, Purahong W, Wubet T et al (2018) Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Diversity 90:85–107. https://doi.org/10.1007/s13225-018-0399-3

    Article  Google Scholar 

  • Durand A, Maillard F, Foulon J et al (2017) Environmental metabarcoding reveals contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanagement site. Microb Ecol 74:795–809

    Article  CAS  Google Scholar 

  • Edwards IP, Zak DR (2010) Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol Ecol 19:1469–1482. https://doi.org/10.1111/j.1365-294X.2010.04566.x

    Article  CAS  Google Scholar 

  • Egan CP, Callaway RM, Hart MM et al (2017) Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient. Mycorrhiza 27:273–282. https://doi.org/10.1007/s00572-016-0752-x

    Article  Google Scholar 

  • Erlandson SR, Savage JA, Cavender-Bares JM, Peay KG (2016) Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol Ecol 92

  • Eusemann P, Schnittler M, Nilsson RH et al (2016) Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome-Picea glauca system at an arctic treeline ecotone. New Phytol 211:1221–1231. https://doi.org/10.1111/nph.13988

    Article  CAS  Google Scholar 

  • Fadrosh DW, Ma B, Gajer P, et al (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2: 1–7.Fang M, Liang M, Liu X, et al (2020) Abundance of saprotrophic fungi determines decomposition rates of leaf litter from arbuscular mycorrhizal and ectomycorrhizal trees in a subtropical forest. Soil Biology and Biochemistry 149:107966. https://doi.org/10.1016/j.soilbio.2020.107966

  • Feinstein LM, Blackwood CB (2013) The spatial scaling of saprotrophic fungal beta diversity in decomposing leaves. Mol Ecol 22:1171–1184. https://doi.org/10.1111/mec.12160

    Article  CAS  Google Scholar 

  • Ferlian O, Cesarz S, Craven D et al (2018) Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9:e02226

    Article  Google Scholar 

  • Fesel PH, Zuccaro A (2016) Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Curr Opin Microbiol 32:103–112

    Article  Google Scholar 

  • Francioli D, van Rijssel SQ, van Ruijven J et al (2021) Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil 461:91–105

    Article  CAS  Google Scholar 

  • Francioli D, van Rijssel SQ, van Ruijven J, et al (2020) Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant and Soil 1–15

  • Frankel SJ, Alexander J, Benner D, et al (2020) Phytophthora pathogens threaten rare habitats and conservation plantings

  • Frey SD (2019) Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331

    Article  Google Scholar 

  • Garbelotto M, Gonthier P (2013) Biology, epidemiology, and control of heterobasidion species worldwide. Annu Rev Phytopathol. https://doi.org/10.1146/annurev-phyto-082712-102225

    Article  Google Scholar 

  • Gearman M, Blinnikov MS (2019) Mapping the potential distribution of oak wilt (Bretziella fagacearum) in East Central and Southeast Minnesota using Maxent. J Forest 117:579–591

    Article  Google Scholar 

  • Geils BW, Vogler DR (2011) A natural history of Cronartium ribicola. In: In: Keane, Robert E.; Tomback, Diana F.; Murray, Michael P.; Smith, Cyndi M., eds. The future of high-elevation, five-needle white pines in Western North America: proceedings of the high five symposium. 28–30 June 2010; Missoula, MT. Proceedings RMRS-P-63 210–217

  • Geml J, Morgado LN, Semenova-Nelsen TA (2021) Tundra type drives distinct trajectories of functional and taxonomic composition of arctic fungal communities in response to climate change–results from long-term experimental summer warming and increased snow depth. Front Microbiol 12:490

    Article  Google Scholar 

  • Green JL, Holmes AJ, Westoby M et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750. https://doi.org/10.1038/nature03034

    Article  CAS  Google Scholar 

  • Guerrero-Galán C, Calvo-Polanco M, Zimmermann SD (2019) Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza 29:291–301

    Article  Google Scholar 

  • Guo M, Ding G, Gao G, et al (2020) Community composition of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica plantations of various ages in the Horqin Sandy Land. Ecological Indicators 110:105860

  • Gweon HS, Oliver A, Taylor J et al (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6:973–980. https://doi.org/10.1111/2041-210X.12399

    Article  Google Scholar 

  • Haňáčkova Z, Koukol O, Štursová M et al (2015) Fungal succession in the needle litter of a montane Picea abies forest investigated through strain isolation and molecular fingerprinting. Fungal Ecol 13:157–166. https://doi.org/10.1016/j.funeco.2014.09.007

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/mmbr.00050-14

    Article  Google Scholar 

  • Hart SC (2019) Fungal community dynamics and carbon mineralization in Populus tremuloides, Picea mariana, and Pinus banksiana coarse woody debris in two ecoregions of northern Ontario. (Doctoral dissertation, Laurentian University of Sudbury)

  • Harvey NR, Albury CL, Stuart S, et al (2019) Ion torrent high throughput mitochondrial genome sequencing (HTMGS). Plos one 14:p.e0224847.

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. In: The Fungal Kingdom. pp 79–95

  • Hayward J, Horton TR, Pauchard A, Nunez MA (2015) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444. https://doi.org/10.1890/14-1100.1

    Article  Google Scholar 

  • Held BW, Blanchette RA (2017) Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol 121:145–157

    Article  Google Scholar 

  • Higgins KL, Arnold AE, Coley PD, Kursar TA (2014) Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–11. https://doi.org/10.1016/j.funeco.2013.12.005

    Article  Google Scholar 

  • Hiiesalu I, Bahram M, Tedersoo L (2017) Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol Ecol 26:4846–4858. https://doi.org/10.1111/mec.14246

    Article  Google Scholar 

  • Hoppe B, Purahong W, Wubet T et al (2016) Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity 77:367–379

    Article  Google Scholar 

  • Hu S, Bidochka MJ (2021) Root colonization by endophytic insect-pathogenic fungi. J Appl Microbiol 130:570–581. https://doi.org/10.1111/jam.14503

    Article  CAS  Google Scholar 

  • Huang M, Chai L, Jiang D et al (2021) Spatial patterns of soil fungal communities are driven by dissolved organic matter (DOM) quality in semi-arid regions. Microb Ecol 82:202–214

    Article  Google Scholar 

  • Ishida TA, Nordin A (2010) No evidence that nitrogen enrichment affect fungal communities of Vaccinium roots in two contrasting boreal forest types. Soil Biol Biochem 42:234–243. https://doi.org/10.1016/j.soilbio.2009.10.021

    Article  CAS  Google Scholar 

  • Izuno A, Tanabe AS, Toju H et al (2016) Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: a massively parallel next-generation sequencing analysis. Mycoscience 57:171–180. https://doi.org/10.1016/j.myc.2015.12.005

    Article  CAS  Google Scholar 

  • H Jacquemyn M Waud VSFT Merckx et al 2016 Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus DactylorhizaSci Rep 6https://doi.org/10.1038/srep37182

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528. https://doi.org/10.1086/282687

    Article  Google Scholar 

  • Jernelöv A (2017) Dutch elm disease in Europe and north America. In: The Long-Term Fate of Invasive Species. Springer, pp 161–176

  • Juan-Ovejero R, Briones MJI, Öpik M (2020) Fungal diversity in peatlands and its contribution to carbon cycling. Appl Soil Ecol 146:103393. https://doi.org/10.1016/j.apsoil.2019.103393

    Article  Google Scholar 

  • A Jumpponen KL Jones 2009 Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercusmacrocarpa phyllosphere New Phytolhttps://doi.org/10.1111/j.1469-8137.2009.02990.x

  • Jung T, Jung MH, Webber JF et al (2021) The destructive tree pathogen Phytophthora ramorum originates from the laurosilva forests of East Asia. Journal of Fungi 7:226

    Article  CAS  Google Scholar 

  • Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473

    Article  Google Scholar 

  • Klein T, Siegwolf RTW, Körner C (2016) Belowground carbon trade among tall trees in a temperate forest. Science 352:342–344. https://doi.org/10.1126/science.aad6188

    Article  CAS  Google Scholar 

  • Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. https://doi.org/10.1038/ng.3223

    Article  CAS  Google Scholar 

  • Kohout P, Charvátová M, Štursová M et al (2018) Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J 12:692–703. https://doi.org/10.1038/s41396-017-0027-3

    Article  CAS  Google Scholar 

  • Koizumi T, Nara K (2017) Communities of putative ericoid mycorrhizal fungi isolated from alpine dwarf shrubs in Japan: effects of host identity and microhabitat. Microbes and environments ME16180

  • Koranda M, Kaiser C, Fuchslueger L et al (2013) Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biol Biochem 60:95–104. https://doi.org/10.1016/j.soilbio.2013.01.025

    Article  CAS  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O et al (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599. https://doi.org/10.1111/1365-2435.12345

    Article  Google Scholar 

  • Kreyling J, Peršoh D, Werner S et al (2012) Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of Holcus lanatus and Calluna vulgaris. Plant Soil 353:19–31. https://doi.org/10.1007/s11104-011-0970-0

    Article  CAS  Google Scholar 

  • Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment 2:236–249. https://doi.org/10.1007/s40974-017-0064-9

    Article  Google Scholar 

  • Lahrmann U, Strehmel N, Langen G et al (2015) Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol 207:841–857. https://doi.org/10.1111/nph.13411

    Article  CAS  Google Scholar 

  • Lallemand F, Gaudeul M, Lambourdière J et al (2016) The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytol 212:314–319. https://doi.org/10.1111/nph.14092

    Article  Google Scholar 

  • Lamit LJ, Lau MK, Sthultz CM et al (2014) Tree genotype and genetically based growth traits structure twig endophyte communities. Am J Bot 101:467–478. https://doi.org/10.3732/ajb.1400034

    Article  Google Scholar 

  • Leopold DR (2016) Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol 24:114–123

    Article  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Kalisz S et al (2017) Biological invasions in forest ecosystems. Biol Invasions 19:3437–3458

    Article  Google Scholar 

  • Li Y, Gao G, Lin Y et al (2020) Pacific biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome. GigaScience 9:114

    Article  CAS  Google Scholar 

  • Lovett GM, Canham CD, Arthur MA et al (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395–405. https://doi.org/10.1641/0006-3568(2006)056[0395:FERTEP]2.0.CO;2

    Article  Google Scholar 

  • Lu H, Giordano F, Ning Z (2016) Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14:265–279

    Article  Google Scholar 

  • Lustenhouwer N, Maynard DS, Bradford MA et al (2020) A trait-based understanding of wood decomposition by fungi. Proc Natl Acad Sci 117:11551–11558

    Article  CAS  Google Scholar 

  • Maitra RD, Kim J, Dunbar WB (2012) Recent advances in nanopore sequencing. Electrophoresis 33:3418–3428

    Article  CAS  Google Scholar 

  • Mäkipää R, Rajala T, Schigel D et al (2017) Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J 11:1964–1974. https://doi.org/10.1038/ismej.2017.57

    Article  Google Scholar 

  • Martínez-García LB, de Deyn GB, Pugnaire FI et al (2017) Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob Change Biol 23:5228–5236

    Article  Google Scholar 

  • Martínez-Medina A, Fernandez I, Lok GB et al (2017) Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377. https://doi.org/10.1111/nph.14251

    Article  CAS  Google Scholar 

  • Martino E, Morin E, Grelet G et al (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217:1213–1229

    Article  CAS  Google Scholar 

  • Martins F, Pereira JA, Bota P et al (2016) Fungal endophyte communities in above- and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol 20:193–201. https://doi.org/10.1016/j.funeco.2016.01.005

    Article  Google Scholar 

  • Matsuoka S, Suzuki Y, Hobara S, Osono T (2018) Fungal succession and decomposition of composted aquatic plants applied to soil. Fungal Ecol 35:34–41. https://doi.org/10.1016/j.funeco.2018.06.005

    Article  Google Scholar 

  • LC Mejía EA Herre JP Sparks et al 2014 Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree Front Microbiol 5https://doi.org/10.3389/fmicb.2014.00479

  • Miyauchi S, Kiss E, Kuo A et al (2020) Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 11:1–17. https://doi.org/10.1038/s41467-020-18795-w

    Article  CAS  Google Scholar 

  • Modi A, Vai S, Caramelli D, Lari M (2021) The Illumina sequencing protocol and the NovaSeq 6000 system. Bacterial Pangenomics. Humana, New York, NY, pp 15–42

    Chapter  Google Scholar 

  • Mony C, Vandenkoornhuyse P, Bohannan BJM et al (2020) A landscape of opportunities for microbial ecology research. Front Microbiol 11:2964

    Article  Google Scholar 

  • Moor H, Nordén J, Penttilä R et al (2021) Long-term effects of colonization–extinction dynamics of generalist versus specialist wood-decaying fungi. J Ecol 109:491–503. https://doi.org/10.1111/1365-2745.13526

    Article  Google Scholar 

  • Morris EK, Morris DJP, Vogt S et al (2019) Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J 13:1639–1646

    Article  CAS  Google Scholar 

  • Morrison EW, Pringle A, van Diepen LTA et al (2019) Warming alters fungal communities and litter chemistry with implications for soil carbon stocks. Soil Biol Biochem 132:120–130. https://doi.org/10.1016/j.soilbio.2019.02.005

    Article  CAS  Google Scholar 

  • Muneer MA, Wang P, Zhang J et al (2020) Formation of common mycorrhizal networks significantly affect plant biomass and soil properties of the neighboring plants under various nitrogen levels. Microorganisms 8:230. https://doi.org/10.3390/microorganisms8020230

    Article  CAS  Google Scholar 

  • Nagati M, Roy M, Manzi S et al (2018) Impact of local forest composition on soil fungal communities in a mixed boreal forest. Plant Soil 432:345–357

    Article  CAS  Google Scholar 

  • Naik BS (2019) Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis 79:99–115

    Article  Google Scholar 

  • Netherway T, Bengtsson J, Krab EJ, Bahram M (2021) Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic Appl Ecol 50:25–42

    Article  Google Scholar 

  • Newsham KK, Hopkins DW, Carvalhais LC et al (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6:182–186. https://doi.org/10.1038/nclimate2806

    Article  Google Scholar 

  • Nicolás C, Martin-Bertelsen T, Floudas D et al (2019) The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J 13:977–988

    Article  CAS  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  Google Scholar 

  • Ning C, Xiang W, Mueller GM et al (2020) Differences in ectomycorrhizal community assembly between native and exotic pines are reflected in their enzymatic functional capacities. Plant Soil 446:179–193

    Article  CAS  Google Scholar 

  • Nottingham AT, Fierer N, Turner BL et al (2018) Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99:2455–2466

    Article  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. https://doi.org/10.1111/j.1469-8137.2010.03334.x

    Article  CAS  Google Scholar 

  • Otsing E, Anslan S, Ambrosio E et al (2021) Tree species richness and neighborhood effects on ectomycorrhizal fungal richness and community structure in boreal forest. Front Microbiol 12:264

    Article  Google Scholar 

  • Palazzotto E, Weber T (2018) Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 45:109–116

    Article  CAS  Google Scholar 

  • Palta Ş, Genç Lermi A, Öztürk H (2018) Determination of Arbuscular mycorrhizal fungi at different altitudinal gradients. Fresenius Environ Bull 27:7045–7053

    CAS  Google Scholar 

  • Parker IM, Saunders M, Bontrager M et al (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–544. https://doi.org/10.1038/nature14372

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  Google Scholar 

  • Pärtel M, Zobel M, Öpik M, Tedersoo L (2017) Global patterns in local and dark diversity, species pool size and community completeness in Ectomycorrhizal fungi. In: Biogeography of mycorrhizal symbiosis. Springer, pp 395–406

  • Peay KG (2016) The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst 47:143–164. https://doi.org/10.1146/annurev-ecolsys-121415-032100

    Article  Google Scholar 

  • Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861. https://doi.org/10.1038/ismej.2013.66

    Article  CAS  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447

    Article  CAS  Google Scholar 

  • Peñuelas J, Rico L, Ogaya R et al (2012) Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol 14:565–575. https://doi.org/10.1111/j.1438-8677.2011.00532.x

    Article  Google Scholar 

  • Peršoh D (2013) Factors shaping community structure of endophytic fungi-evidence from the Pinus-Viscum-system. Fungal Diversity 60:55–69. https://doi.org/10.1007/s13225-013-0225-x

    Article  Google Scholar 

  • Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Diversity 75:1–25. https://doi.org/10.1007/s13225-015-0334-9

    Article  Google Scholar 

  • Peršoh D, Segert J, Zigan A, Rambold G (2013) Fungal community composition shifts along a leaf degradation gradient in a European beech forest. Plant Soil 362:175–186. https://doi.org/10.1007/s11104-012-1271-y

    Article  CAS  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220:1059–1075. https://doi.org/10.1111/nph.15119

    Article  Google Scholar 

  • Qasim M, Lin Y, Dash CK et al (2018) Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria. Microb Pathog 119:109–118

    Article  Google Scholar 

  • Qasim M, Xiao H, He K et al (2021) Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol c: Toxicol Pharmacol 248:109–112

    Google Scholar 

  • Quemener M, Mara P, Schubotz F et al (2020) Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ Microbiol 22:3950–3967

    Article  CAS  Google Scholar 

  • Quince C, Lanzén A, Curtis TP et al (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  Google Scholar 

  • Reisen WK (2010) Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55:461–483

    Article  CAS  Google Scholar 

  • Reva M, Cano C, Herrera M-A, Bago A (2021) Arbuscular mycorrhizal inoculation enhances endurance to severe heat stress in three horticultural crops. HortScience 56:396–406

    Article  CAS  Google Scholar 

  • Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19:7–20. https://doi.org/10.1111/mpp.12542

    Article  CAS  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289

    Article  Google Scholar 

  • Rosenthal LM, Larsson K-H, Branco S et al (2017) Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia 109:115–127

    Article  CAS  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J et al (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649. https://doi.org/10.1128/mmbr.00035-14

    Article  Google Scholar 

  • Santander C, Aroca R, Cartes P et al (2021) Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiol Biochem 158:396–409

    Article  CAS  Google Scholar 

  • Santonja M, Foucault Q, Rancon A et al (2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biol Biochem 125:27–36

    Article  CAS  Google Scholar 

  • Schimann H, Bach C, Lengelle J et al (2017) Diversity and structure of fungal communities in neotropical rainforest soils: the effect of host recurrence. Microb Ecol 73:310–320

    Article  Google Scholar 

  • Schneider AN, Sundh J, Sundström G et al (2021) Comparative fungal community analyses using metatranscriptomics and internal transcribed spacer amplicon sequencing from Norway spruce. Msystems 6:e00884-e920

    Article  CAS  Google Scholar 

  • Segnitz RM, Russo SE, Davies SJ, Peay KG (2020) Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant family. Ecology 101:e03083

  • Selosse MA, Charpin M, Not F (2017) Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett 20:246–263. https://doi.org/10.1111/ele.12714

    Article  Google Scholar 

  • Shen Z, Fei S, Feng J et al (2012) Geographical patterns of community-based tree species richness in Chinese mountain forests: the effects of contemporary climate and regional history. Ecography 35:1134–1146. https://doi.org/10.1111/j.1600-0587.2012.00049.x

    Article  Google Scholar 

  • Shi LL, Mortimer PE, Ferry Slik JW et al (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Diversity 64:305–315. https://doi.org/10.1007/s13225-013-0270-5

    Article  Google Scholar 

  • Sietiö OM, Tuomivirta T, Santalahti M et al (2018) Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. New Phytol 218:738–751. https://doi.org/10.1111/nph.15040

    Article  CAS  Google Scholar 

  • SistaKameshwar AK, Qin W (2018) Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9:93–105. https://doi.org/10.1080/21501203.2017.1419296

    Article  CAS  Google Scholar 

  • Smith GR, Steidinger BS, Bruns TD, Peay KG (2018) Competition–colonization tradeoffs structure fungal diversity. ISME J 12:1758–1767

    Article  CAS  Google Scholar 

  • Smith ME, Henkel TW, Williams GC et al (2017) Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol 215:443–453. https://doi.org/10.1111/nph.14570

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis 3rd edn Academic Press: San Diego. Academic Press, San Diego, and London, pp 1–769

    Book  Google Scholar 

  • Song X, Corlett RT (2021) Do natural enemies mediate conspecific negative distance‐and density‐dependence of trees? A meta‐analysis of exclusion experiments. Oikos

  • Song X, Lim JY, Yang J, Luskin MS (2021) When do Janzen-Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. Ecol Lett 24:608–620. https://doi.org/10.1111/ele.13665

    Article  Google Scholar 

  • Soudzilovskaia NA, Douma JC, Akhmetzhanova AA et al (2015) Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob Ecol Biogeogr 24:371–382. https://doi.org/10.1111/geb.12272

    Article  Google Scholar 

  • Strullu-Derrien C, Selosse M, Kenrick P, Martin FM (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–1030

    Article  Google Scholar 

  • Stürmer SL, Bever JD, Morton JB (2018) Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28:587–603

    Article  Google Scholar 

  • Sun H, Terhonen E, Kovalchuk A et al (2016) Dominant tree species and soil type affect the fungal community structure in a boreal peatland forest. Appl Environ Microbiol 82:2632–2643

    Article  CAS  Google Scholar 

  • Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568

    Article  Google Scholar 

  • Taerum SJ, Hoareau TB, Duong TA et al (2017) Putative origins of the fungus Leptographium procerum. Fungal Biol 121:82–94. https://doi.org/10.1016/j.funbio.2016.09.007

    Article  Google Scholar 

  • Talbot JM, Bruns TD, Taylor JW et al (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci USA 111:6341–6346. https://doi.org/10.1073/pnas.1402584111

    Article  CAS  Google Scholar 

  • Tančić-Živanov S, Nešić L, Jevtić R et al (2017) Fungal diversity as influenced by soil characteristics. Zemdirbyste-Agriculture 104:305–310

    Article  Google Scholar 

  • Tateno O, Hirose D, Osono T, Takeda H (2015) Beech cupules share endophytic fungi with leaves and twigs. Mycoscience 56:252–256. https://doi.org/10.1016/j.myc.2014.07.005

    Article  Google Scholar 

  • L Tedersoo M Bahram S Põlme et al 2014 Global diversity and geography of soil fungi Science 346https://doi.org/10.1126/science.1256688

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367:

  • Terhonen E, Blumenstein K, Kovalchuk A, Asiegbu FO (2019) Forest tree microbiomes and associated fungal endophytes: functional roles and impact on forest health. Forests 10:42

    Article  Google Scholar 

  • Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63. https://doi.org/10.1016/j.biocontrol.2016.04.006

    Article  Google Scholar 

  • Thakur MP, van der Putten WH, Cobben MMP et al (2019) Microbial invasions in terrestrial ecosystems. Nat Rev Microbiol 17:621–631

    Article  CAS  Google Scholar 

  • Toju H, Sato H (2018) Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. Front Microbiol 9:433

    Article  Google Scholar 

  • Toju H, Yamamoto S, Sato H et al (2013) Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol Evol 3:1281–1293. https://doi.org/10.1002/ece3.546

    Article  Google Scholar 

  • Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. https://doi.org/10.1146/annurev-ecolsys-120213-091857

    Article  Google Scholar 

  • Treseder KK, Marusenko Y, Romero-Olivares AL, Maltz MR (2016) Experimental warming alters potential function of the fungal community in boreal forest. Glob Change Biol 22:3395–3404. https://doi.org/10.1111/gcb.13238

    Article  Google Scholar 

  • Unterseher M, Karunarathna SC, Cruz GR et al (2018) Mycobiomes of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) – a case study reveals clear tissue preferences and differences in diversity and composition. Mycol Prog 17:489–500. https://doi.org/10.1007/s11557-018-1375-8

    Article  Google Scholar 

  • Vályi K, Mardhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10:2341–2351

    Article  Google Scholar 

  • Van Geel M, Jacquemyn H, Peeters G et al (2020) Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. New Phytol 228:1640–1651

    Article  CAS  Google Scholar 

  • Vanegas J, Muñoz-García A, Pérez-Parra KA, et al (2019) Effect of salinity on fungal diversity in the rhizosphere of the halophyte Avicennia germinans from a semi-arid mangrove. Fungal Ecology 42:100855

  • Vasić V, Pap P, Pajnik LP, Galović V (2017) Gibberella Circinata-Pine Pitch Canker Biljni Lekar (plant Doctor) 45:488–493

    Google Scholar 

  • Vořiškova J, Brabcová V, Cajthaml T, Baldrian P (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278. https://doi.org/10.1111/nph.12481

    Article  CAS  Google Scholar 

  • Wagg C, Schlaeppi K, Banerjee S et al (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

  • Wang J, Rhodes G, Huang Q, Shen Q (2018) Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system. Biol Fertil Soils 54:731–742

    Article  Google Scholar 

  • Wang M (2021) Next-generation sequencing (NGS). In: Clinical Molecular Diagnostics. Springer, pp 305–327

  • Wang M, Tian J, Bu Z et al (2019) Structural and functional differentiation of the microbial community in the surface and subsurface peat of two minerotrophic fens in China. Plant Soil 437:21–40

    Article  CAS  Google Scholar 

  • Wang P, Chen Y, Sun Y et al (2019b) Distinct biogeography of different fungal guilds and their associations with plant species richness in forest ecosystems. Front Ecol Evol. https://doi.org/10.3389/fevo.2019.00216

    Article  Google Scholar 

  • Wei Y, Su Q, Sun Z et al (2016) The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Appl Soil Ecol 107:244–250

    Article  Google Scholar 

  • Weig AR, Peršoh D, Werner S et al (2013) Diagnostic assessment of mycodiversity in environmental samples by fungal ITS1 rDNA length polymorphism. Mycol Prog 12:719–725. https://doi.org/10.1007/s11557-012-0883-1

    Article  Google Scholar 

  • YT Wu T Wubet S Trogisch et al 2013 Forest age and plant species composition determine the soil fungal community composition in a Chinese subtropical forest PLoS ONE 8https://doi.org/10.1371/journal.pone.0066829

  • Xing P, Xu Y, Gao T et al (2020) The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City. China. PeerJ 8:e8527

    Article  CAS  Google Scholar 

  • K Yamaji Y Watanabe H Masuya et al 2016 Root fungal endophytes enhance heavy-metal stress tolerance of Clethrabarbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration PLoS ONE 11https://doi.org/10.1371/journal.pone.0169089

  • DF Yan JG Mills NJC Gellie et al 2018 High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration Biol Conshttps://doi.org/10.1016/j.biocon.2017.10.035

  • Yang T, Adams JM, Shi Y et al (2017) Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol 215:756–765. https://doi.org/10.1111/nph.14606

    Article  CAS  Google Scholar 

  • Yang Y, Dou Y, Huang Y, An S (2017) Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Front Microbiol 8:2198

    Article  Google Scholar 

  • Zhang S, Jin Y, Tang J, Chen X (2009) The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Appl Soil Ecol 41:215–222. https://doi.org/10.1016/j.apsoil.2008.11.002

    Article  Google Scholar 

  • Zivanovic A, Rodgers L (2019) The role of fungal endophytes in plant pathogen resistance. Bios 89:192–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA and HYHC conceptualized the study and written the original draft. MA, WI, and LG helped in reviewing and refining the original draft and helped in visualization, figure preparations, and data investigations. HYHC and LG supervised, validated the final version of the article, and provided funds for this study.

Corresponding author

Correspondence to Han Y. H. Chen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Communicated by: Zhihong Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, M., Islam, W., Gang, L. et al. Advanced research tools for fungal diversity and its impact on forest ecosystem. Environ Sci Pollut Res 29, 45044–45062 (2022). https://doi.org/10.1007/s11356-022-20317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20317-8

Keywords

Navigation