Skip to main content
Log in

Host Associations Between Fungal Root Endophytes and Boreal Trees

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fungal root endophytes colonize root tissue concomitantly with mycorrhizal fungi, but their identities and host preferences are largely unknown. We cultured fungal endophytes from surface-sterilized Cenococcum geophilum ectomycorrhizae of Betula papyrifera, Abies balsamea, and Picea glauca from two boreal sites in eastern Canada. Isolates were initially grouped on the basis of cultural morphology and then identified by internal transcribed spacer ribosomal DNA sequencing or by PCR restriction fragment length polymorphism. Phylogenetic analysis of the sequence data revealed 31 distinct phylotypes among the isolates, comprising mainly members of the ascomycete families Helotiaceae, Dermateaceae, Myxotrichaceae, and Hyaloscyphaceae, although other fungi were also isolated. Multivariate analyses indicate a clear separation among the endophyte communities colonizing each host tree species. Some phylotypes were evenly distributed across the roots of all three host species, some were found preferentially on particular hosts, and others were isolated from single hosts only. The results indicate that fungal root endophytes of boreal trees are not randomly distributed, but instead form relatively distinct assemblages on different host tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Addy HD, Hambleton S, Currah RS (2000) Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta. Mycol Res 104:1213–1221

    Article  CAS  Google Scholar 

  2. Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  3. Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  4. Allen T, Millar T, Berch S, Berbee M (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  5. Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  PubMed  CAS  Google Scholar 

  6. Barrow J, Osuna-Avila P, Reyes-Vera I (2004) Fungal endophytes intrinsically associated with micropropagated plants regenerated from native Bouteloua eriopoda torr. and Atriplex canescens (pursh). Nutt In Vitro Cell Dev-Pl 40:608–612

    Article  Google Scholar 

  7. Belleau A, Brais S, Pare D (2006) Soil nutrient dynamics after harvesting and slash treatments in boreal aspen stands. Soil Sci Soc Am J 70:1189–1199

    Article  CAS  Google Scholar 

  8. Borowicz VA, Juliano SA (1991) Specificity in host–fungus associations: do mutualists differ from antagonists? Evol Ecol 5:385–392

    Article  Google Scholar 

  9. Bougoure DS, Cairney JWG (2005) Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environ Microbiol 7:819–827

    Article  PubMed  CAS  Google Scholar 

  10. Cooke RC, Whipps JM (1980) The evolution of modes of nutrition in fungi parasitic on terrestrial plants. Biol Rev 55:341–362

    Article  Google Scholar 

  11. Cullings KW, Vogler D, Parker V, Finley S (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl Environ Microbiol 66:4988–4991

    Article  PubMed  CAS  Google Scholar 

  12. Davet P, Rouxel F (2000) Detection and isolation of soil fungi. Science, New Hampshire, p 188

    Google Scholar 

  13. Douglas GC, Heslin MC, Reid C (1989) Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterization of synthesized mycorrhizas. Can J Bot 67:2206–2212

    Article  Google Scholar 

  14. DeBellis T, Kernaghan G, Widden P (2007) Plant community influences on soil microfungal assemblages in boreal-mixed wood forests. Mycologia 99:356–367

    Article  CAS  Google Scholar 

  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  16. Fisher PJ, Petrini O, Petrini LE (1991) Endophytic ascomycetes and deuteromycetes in roots of Pinus sylvestris. Nova Hedwig 52:11–15

    Google Scholar 

  17. Garbelotto M, Ratcliff A, Bruns TD, Cobb FW, Otrosina WJ (1995) Use of taxon specific competitive priming PCR to study host specificity, hybridization, and intergroup gene flow. Phytopathology 86:543–551

    Article  Google Scholar 

  18. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  19. Girlanda M, Luppi-Mosca AM (1995) Microfungi associated with ectomycorrhizae of Pinus halepensis Mill. Allionia 33:93–98

    Google Scholar 

  20. Girlanda M, Ghignone S, Luppi AM (2002) Diversity of sterile root-associated fungi of two Mediterranean plants. New Phytol 155:481–498

    Article  Google Scholar 

  21. Grelet GA, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222

    Article  PubMed  CAS  Google Scholar 

  22. Grünig CR, Duo A, Sieber TN, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia 100:47–67

    Article  PubMed  Google Scholar 

  23. Grünig CR, McDonald BA, Sieber TN, Rogers SO, Holdenrieder O (2004) Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genet Biol 41:676–687

    Article  PubMed  Google Scholar 

  24. Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.–Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369

    Article  Google Scholar 

  25. Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (≡ Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Article  Google Scholar 

  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S Ser 41:95–98

    CAS  Google Scholar 

  27. Johannes H, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 299–319

    Google Scholar 

  28. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  29. Hoff JA, Klopfenstein NB, McDonald GI, Tonn JR, Kim MS, Zambino PJ, Hessburg PF, Rogers JD, Peever TL, Carris LM (2004) Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Forest Pathol 34:255–271

    Article  Google Scholar 

  30. Horton T, Bruns T (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339

    Article  Google Scholar 

  31. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2006) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  PubMed  Google Scholar 

  32. Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77

    Article  Google Scholar 

  33. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  34. Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surfaces of bones and teeth. Forensic Sci Int 154:53–61

    Article  PubMed  CAS  Google Scholar 

  35. Kernaghan G, Sigler L, Khasa D (2003) Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by rDNA sequence analysis. Microb Ecol 45:128–136

    Article  PubMed  CAS  Google Scholar 

  36. Kernaghan G, Widden P, Bergeron Y, Légaré S, Paré D (2003) Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 102:497–505

    Article  Google Scholar 

  37. Krebbs CJ (1999) Ecological methodology. Benjamin/Cummings, Menlo Park, p 620

    Google Scholar 

  38. Kwaśna H, Bateman GL, Ward E (2008) Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Appl Soil Ecol 40:44–56

    Article  Google Scholar 

  39. Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  40. Lucas JA (1998) Plant pathology and plant pathogens. Blackwell, Oxford, p 274

    Google Scholar 

  41. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  42. McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, version 4.26. MjM Software Design, Oregon

    Google Scholar 

  43. McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House, Baltimore, 293 pp

    Google Scholar 

  44. Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    Article  PubMed  CAS  Google Scholar 

  45. Menkis A, Vasiliauskas R, Taylor A, Stenlid J, Finlay R (2005) Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation. Mycorrhiza 16:33–41

    Article  PubMed  Google Scholar 

  46. Molina R, Massicotte H, Trappe J (1992) Specificity phenomena in mycorrhizal symbioses: community ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant-fungal process. Chapman & Hall, New York, pp 357–423

    Google Scholar 

  47. Narisawa K, Usuki F, Hashiba T (2004) Control of Verticillium yellows in Chinese cabbage by the dark septate endophytic fungus LtVB3. Phytopathology 94:412–418

    Article  PubMed  CAS  Google Scholar 

  48. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform 4:193–201

    Google Scholar 

  49. Ohtaka N, Narisawa K (2008) Molecular characterization and endophytic nature of the root-associated fungus Meliniomyces variabilis (LtVB3). J Gen Plant Pathol 74:24–31

    Article  CAS  Google Scholar 

  50. Petrini O (1996) Ecological and physiological aspects of host-specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS, Minnisota, pp 87–100

    Google Scholar 

  51. Queloz V, Grünig CR, Sieber TN, Holdenrieder O (2005) Monitoring the spatial and temporal dynamics of a community of the tree-root endophyte Phialocephala fortinii sl. New Phytol 168:651–660

    Article  PubMed  Google Scholar 

  52. Rice AV, Currah RS (2006) Oidiodendron maius: Saprobe in sphagnum peat, mutualist in ericaceous roots. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Berlin, pp 227–246

    Chapter  Google Scholar 

  53. Richter DL (2008) Revival of saprotrophic and mycorrhizal basidiomycete cultures after twenty years in cold storage in sterile water. C J Microbiol 54:595–599

    Article  CAS  Google Scholar 

  54. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  55. Sanders IR (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci 8:143–145

    Article  PubMed  CAS  Google Scholar 

  56. Schild DE, Kennedy A, Stuart MR (1988) Isolation of symbiont and associated fungi from ectomycorrhizas of Sitka spruce. Eur J Forest Pathol 18:51–61

    Article  Google Scholar 

  57. Schulz B, Boyle C (2006) Mutualistic interactions with fungal root endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 261–279

    Chapter  Google Scholar 

  58. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  59. Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte–host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  60. Sigler L, Allan T, Sea Ra L, Berbee M, Berch S (2005) Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America. Stud Mycol 53:53–62

    Article  Google Scholar 

  61. Smith EP, Van Belle G (1984) Nonparametric estimation of species richness. Biometrics 40:119–129

    Article  Google Scholar 

  62. Summerbell RC (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145

    Article  Google Scholar 

  63. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and related methods). Version 4.10b. Sinauer, Sunderland

    Google Scholar 

  64. Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178

    Article  PubMed  CAS  Google Scholar 

  65. Tedersoo L, Suvi T, Jairus T, Ostonen I, Põlme S (2009) Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol 182:727–735

    Article  PubMed  Google Scholar 

  66. ter Braak CJF, Smilauer P (2002) CANOCO 4.5 reference manual and CanoDraw for Windows. User’s guide to Canoco for Windows: software for canonical community ordination. Microcomputer Power, New York, p 499

    Google Scholar 

  67. Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196

    Article  Google Scholar 

  68. Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microb 65:2741–2744

    CAS  Google Scholar 

  69. Verkley GJM, Zijlstra JD, Summerbell RC, Berendse F (2003) Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycol Res 107:689–698

    Article  PubMed  CAS  Google Scholar 

  70. Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131–148

    Article  Google Scholar 

  71. Vrålstad T, Schumacher T, Taylor AFS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152

    Article  Google Scholar 

  72. Wang W, Tsuneda A, Gibas C, Currah RS (2007) Cryptosporiopsis species isolated from the roots of aspen in central Alberta: identification, morphology and interactions with the host, in vitro. Can J Bot 85:1214–1226

    Article  CAS  Google Scholar 

  73. Weishampel P, Bedford B (2006) Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16:495–502

    Article  PubMed  Google Scholar 

  74. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  75. Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  76. Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS (2004) Phialocephala sphaeroides sp nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot 82:607–617

    Article  CAS  Google Scholar 

  77. Wilcox HE, Wang CJK (1987) Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J Forest Res 17:884–889

    Article  Google Scholar 

  78. Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by a grant from the Natural Sciences and Engineering Research Council of Canada (341671-2007). We thank Emily Cormier and Erica Fraser for technical assistance, Cape Breton Highlands National Park and the Lac Duparquet Teaching and Research Forest for field Logistics, and Lynne Sigler for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Kernaghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kernaghan, G., Patriquin, G. Host Associations Between Fungal Root Endophytes and Boreal Trees. Microb Ecol 62, 460–473 (2011). https://doi.org/10.1007/s00248-011-9851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9851-6

Keywords

Navigation