Skip to main content
Log in

Photocatalytic removal of diazinon from aqueous solutions: a quantitative systematic review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Diazinon is a widely used pesticide that can be effectively degraded in aqueous solutions via photocatalytic oxidation. This quantitative systematic review was conducted to shed light on the various aspects of photocatalytic diazinon removal based on evidence. A systematic search was performed in Scopus, PubMed, Web of Science, Embase, and Ovid databases with keywords including diazinon, photocatalysis, and their equivalents. The search was limited to original articles in English published between January 1, 2010, and March 25, 2021. The results were expressed by descriptive statistics including mean, SD, median, and percentiles, among others. The initial electronic and manual search retrieved 777 articles, among which 41 studies comprising 49 trials were qualified for data synthesis. The reported diazinon degradation rate ranged from 2 to 100%, with a mean ± SD of 59.17 ± 28.03%. Besides, ZnO/UV, WO3/UV, TiO2/UV, and TiO2/Vis, in sequence, were the most widely used processes with the highest efficacies. Solution pH in the range of 5–8, catalyst dose below 600 mg/L, diazinon initial concentration below 40 mg/L, and contact time of 20–140 min could be the optimum conditions. Diazinon degradation obeyed the first-order kinetic model with kobs between 0.0042 and 1.86 min−1 and consumed energy of 38.93–350.36 kWh/m3. Diazoxon and IMP were the most detected by-products of diazinon degradation although bioassay data were scarce. Based on the results, photocatalytic processes are very efficient in removing diazinon from aqueous solutions although more elaborate studies are needed to assess the mineralization rate and effluent toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used in this article are available for everyone on reasonable request.

References

  • Ahmadifard, T., R. Heydari, M. J. Tarrahi and G. S. Khorramabadi (2019). "Photocatalytic degradation of diazinon in aqueous solutions using immobilized MgO nanoparticles on concrete." Int. J. Chem. React. Eng. 17(9).

  • MG Alalm A Tawfik SJJMES Ookawara 2015 Combined Solar Advanced Oxidation and PAC Adsorption for Removal of Pesticides from Industrial Wastewater 6 800 809

  • Ayoubi-Feiz B, Mashhadizadeh MH, Sheydaei M (2018) Preparation of reusable nano N-TiO2/graphene/titanium grid sheet for electrosorption-assisted visible light photoelectrocatalytic degradation of a pesticide: effect of parameters and neural network modeling. J Electroanal Chem 823:713–722

    Article  CAS  Google Scholar 

  • Ayoubi-Feiz B, Mashhadizadeh MH, Sheydaei M (2019) Degradation of diazinon by new hybrid nanocomposites N-TiO2/graphene/Au and N-TiO2/graphene/Ag using visible light photo-electro catalysis and photo-electro catalytic ozonation: optimization and comparative study by Taguchi method. Sep Purif Technol 211:704–714

    Article  CAS  Google Scholar 

  • Baneshi MM, Rezaei S, Sadat A, Mousavizadeh A, Barafrashtehpour M, Hekmatmanesh H (2017) Investigation of photocatalytic degradation of diazinon using titanium dioxide (TiO2) nanoparticles doped with iron in the presence of ultraviolet rays from the aqueous solution. Biosci Biotechnol Res Commun 10(1):60–67

    Google Scholar 

  • Biglari H, Afsharnia M, Alipour V, Khosravi R, Sharafi K, Mahvi AH (2017) A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ Sci Pollut Res 24(4):4105–4116

    Article  CAS  Google Scholar 

  • Borji SH, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH (2014) Investigation of photocatalytic degradation of phenol by Fe (III)-doped TiO2 and TiO2 nanoparticles. J Environ Health Sci Eng 12(1):1–10

    Google Scholar 

  • Brady J, Wallender W, Werner I, Fard BM, Zalom F, Oliver M, Wilson B, Mata M, Henderson J, Deanovic L (2006) Pesticide runoff from orchard floors in Davis, California, USA: a comparative analysis of diazinon and esfenvalerate. Agric Ecosyst Environ 115(1–4):56–68

    Article  CAS  Google Scholar 

  • Cadiau A, Kolobov N, Srinivasan S, Goesten MG, Haspel H, Bavykina AV, Tchalala MR, Maity P, Goryachev A, Poryvaev AS (2020) A titanium metal–organic framework with visible-light-responsive photocatalytic activity. Angew Chem 132(32):13570–13574

    Article  Google Scholar 

  • Chemingui H, Mzali JC, Missaoui T, Konyar M, Smiri M, Yatmaz HC, Hafiane A (2021) Characteristics of Er-doped zinc oxide layer: application in synthetic dye solution color removal. Desalin Water Treat 209:402–413

    Article  Google Scholar 

  • Choi S, Sang B-I, Hong J, Yoon KJ, Son J-W, Lee J-H, Kim B-K, Kim H (2017) Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations. Sci Rep 7(1):1–10

    Google Scholar 

  • Čolović M, Krstić D, Petrović S, Leskovac A, Joksić G, Savić J, Franko M, Trebše P, Vasić V (2010) Toxic effects of diazinon and its photodegradation products. Toxicol Lett 193(1):9–18

    Article  Google Scholar 

  • Daiqi, Y. Y. H. B. Y. and C. Xiaoshan (2010). "Characterization and photocatalytic performance of CdS-TiO2/MWCNTs [J]." Chin. J. Environ. Eng. 2.

  • Dong Y-C, Bai Z-P, Zhong L-W, Wang Z-S, Zhu T (2005) Purification of indoor ammonia with nano-TiO2 loaded on fabric. China Environ Sci 25:26

    CAS  Google Scholar 

  • Drygała, A. (2021). Influence of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cells. IOP Conference Series: Earth and Environmental Science, IOP Publishing.

  • Fadaei AM, Dehghani MH (2012) Photocatalytic oxidation of organophosphorus pesticides using zinc oxide. Res J Chem Environ 16(3):104–109

    CAS  Google Scholar 

  • Favier L, Rusu L, Simion AI, Hlihor RM, Pacala ML, Augustyniak A (2019) Efficient degradation of clofibric acid by heterogeneous photocatalytic oxidation process. Environ Eng Manag J 18(8):1683–1692

    Article  CAS  Google Scholar 

  • Fritschi L, McLaughlin J, Sergi C, Calaf G, Le Curieux F, Forastiere F, Kromhout H, Egeghy P, Jahnke G, Jameson C (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Red 114(2):70134–70138

    Google Scholar 

  • Gar Alalm M, Tawfik A, Ookawara S (2015) Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. J Water Process Eng 8:55–63

    Article  Google Scholar 

  • Ghodsi, S., A. Esrafili, R. R. Kalantary, M. Gholami and H. R. Sobhi (2020). "Synthesis and evaluation of the performance of g-C3N4/Fe3O4/Ag photocatalyst for the efficient removal of diazinon: Kinetic studies." J. Photochem. Photobiol. A: Chem. 389.

  • Gong, B., P. Wu, J. Yang, X. Peng, H. Deng and G. Yin (2021). "Electrochemical and photocatalytic properties of Ru-doped TiO2 nanostructures for degradation of methyl orange dye." Int. J. Electrochem. Sci. 16(2).

  • Goulart, L. A., G. O. Santos, K. I. Eguiluz, G. R. Salazar-Banda, M. R. Lanza, C. Saez and M. A. Rodrigo (2021). "Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates." Chemosphere 271: 129451.

  • Gunasekar V, Divya B, Brinda K, Vijaykrishnan J, Ponnusami V, Rajan K (2013) Enzyme mediated synthesis of Ag–TiO2 photocatalyst for visible light degradation of reactive dye from aqueous solution. J Solgel Sci Technol 68(1):60–66

    Article  CAS  Google Scholar 

  • Hadei, M., A. Mesdaghinia, R. Nabizadeh, A. H. Mahvi, S. Rabbani and K. Naddafi (2021). "A comprehensive systematic review of photocatalytic degradation of pesticides using nano TiO 2." Environ Sci Pollut Res: 1–17.

  • Hassan AF, Elhadidy H, Abdel-Mohsen AM (2017) Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons. J Taiwan Inst Chem Eng 75:299–306

    Article  CAS  Google Scholar 

  • Hassan, M., T. Rahaman, K. Ferdous, M. Parvez and M. Islam (2019). "Effect of dietary exposure to diazinon on different organs and hematological parameters of rabbit." J. Entomol. Zool. Stud.

  • Higgins, J. P. and S. Green (2008). "Cochrane handbook for systematic reviews of interventions."

  • Hossaini H, Moussavi G, Farrokhi M (2014) The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Res 59:130–144

    Article  CAS  Google Scholar 

  • Hossaini H, Moussavi G, Farrokhi M (2017) Oxidation of diazinon in cns-ZnO/LED photocatalytic process: catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products. Sep Purif Technol 174:320–330

    Article  CAS  Google Scholar 

  • Hosseini F, Mohebbi S (2018) Photocatalytic oxidation based on modified titanium dioxide with reduced graphene oxide and CdSe/CdS as nanohybrid materials. J Clust Sci 29(2):289–300

    Article  CAS  Google Scholar 

  • Jafari SJ, Moussavi G, Hossaini H (2016) Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process. Desalination Water Treat 57(8):3782–3790

    Article  CAS  Google Scholar 

  • Jansanthea P, Chomkitichai W, Ketwaraporn J, Pookmanee P, Phanichphant S (2018) Template-free hydrothermal synthesis of CeVO4 for photocatalytic degradation of insecticide diazinon. Digest J Nanomater Biostruct 13(4):969–975

    Google Scholar 

  • Jonidi-Jafari A, Gholami M, Farzadkia M, Esrafili A, Shirzad-Siboni M (2017) Application of Ni-doped ZnO nanorods for degradation of diazinon: kinetics and by-products. Sep Sci Technol 52(15):2395–2406

    Article  CAS  Google Scholar 

  • Jonidi-Jafari A, Shirzad-Siboni M, Yang J-K, Naimi-Joubani M, Farrokhi M (2015) Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. J Taiwan Inst Chem Eng 50:100–107

    Article  CAS  Google Scholar 

  • Joubani MN, Zanjanchi M, Sohrabnezhad S (2020) The carboxylate magnetic–Zinc based metal-organic framework heterojunction: Fe3O4-COOH@ ZIF-8/Ag/Ag3PO4 for plasmon enhanced visible light Z-scheme photocatalysis. Adv Powder Technol 31(1):29–39

    Article  Google Scholar 

  • Joy M, Mohamed AP, Warrier K, Hareesh U (2017) Visible-light-driven photocatalytic properties of binary MoS2/ZnS heterostructured nanojunctions synthesized via one-step hydrothermal route. New J Chem 41(9):3432–3442

    Article  CAS  Google Scholar 

  • Kalantary RR, Shahamat YD, Farzadkia M, Esrafili A, Asgharnia H (2014) Heterogeneous photocatalytic degradation of diazinon in water using nano-TiO2: modeling and intermediates. Eur J Exp Biol 4(1):186–194

    CAS  Google Scholar 

  • Katzenberg A, Raman A, Schnabel NL, Quispe AL, Silverman AI, Modestino MA (2020) Photocatalytic hydrogels for removal of organic contaminants from aqueous solution in continuous flow reactors. React Chem Eng 5(2):377–386

    Article  CAS  Google Scholar 

  • Khaghani R, Zare MR (2020) Toxicity of malathion and diazinon byproducts generated through the UV/nano-Zn process. Health Scope 9(1):7

    Google Scholar 

  • Khoiriah K, Safni S, Syukri S, Gunlazuardi J (2020a) The operational parameters effect on photocatalytic degradation of diazinon using carbon and nitrogen modified TiO2. Rasayan J Chem 13(3):1919–1925

    Article  CAS  Google Scholar 

  • Khoiriah K, Wellia DV, Gunlazuardi J, Safni S (2020b) Photocatalytic degradation of commercial diazinon pesticide using C, N-codoped TiO2 as photocatalyst. Indones J Chem 20(3):587–596

    Article  CAS  Google Scholar 

  • Khun KK, Ash GJ, Stevens MM, Huwer RK, Wilson BA (2021) Compatibility of Metarhizium anisopliae and Beauveria bassiana with insecticides and fungicides used in macadamia production in Australia. Pest Manag Sci 77(2):709–718

    Article  CAS  Google Scholar 

  • Kumara KJ, Krishnamurthy G, Walmik P, Naik S, Rani RP, Naik N (2021) Synthesis of reduced graphene oxide decorated with Sn/Na doped TiO2 nanocomposite: a photocatalyst for Evans blue dye degradation. Emerg Mater 4(2):457–468

    Article  Google Scholar 

  • Li, Z., A. Ivanenko, X. Meng and Z. Zhang (2019). "Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors." J. Hazard. Mater. 380: 120822.

  • Liu, C., W. Guo, J. Chen, J. Zou, Z. Wang and L. Wu (2020). "Ultrathin ZnTi-LDH nanosheets for photocatalytic aerobic oxidation of aniline based on coordination activation." Catal. Sci. Technol.

  • Maleki, A., F. Moradi, B. Shahmoradi, R. Rezaee and S. M. Lee (2020). "The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate." J. Mol. Liq. 297.

  • Mirmasoomi SR, Ghazi MM, Galedari M (2017) Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol 175:418–427

    Article  CAS  Google Scholar 

  • Mohagheghian, A., K. Ayagh, K. Godini and M. Shirzad-Siboni (2017). "Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation." J. Adv. Oxid. Technol. 20(2).

  • Mohagheghian A, Karimi SA, Yang JK, Shirzad-Siboni M (2016) Photocatalytic degradation of diazinon by illuminated WO3 nanopowder. Desalin Water Treat 57(18):8262–8269

    Article  CAS  Google Scholar 

  • Mohammadia M, Malekib A, Zandib S, Mohammadib E, Ghahremanib E, Yangc J-K, Leed S-M (2020) Photocatalytic decomposition of aqueous diazinon using reduced graphene/ZnO nanocomposite doped with manganese. Desalin Water Treat 184:315–325

    Article  Google Scholar 

  • Mohammadzadeh Kakhki, R. and F. Ahsani (2020). "Development of a novel and high performance visible‐light‐induced Cd3OSO4 nanophotocatalyst for degradation of diazinon." Appl. Organomet. Chem. 34(9): e5770.

  • Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman and P. Group (2009). "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement." PLoS MED 6(7): e1000097.

  • Molla, M. A. I., M. Furukawa, I. Tateishi, H. Katsumata and S. Kaneco (2019). "Mineralization of Diazinon with nanosized-photocatalyst TiO2 in water under sunlight irradiation: optimization of degradation conditions and reaction pathway." Environ. Technol.

  • Moussavi G, Hossaini H, Jafari SJ, Farokhi M (2014) Comparing the efficacy of UVC, UVC/ZnO and VUV processes for oxidation of organophosphate pesticides in water. J Photochem Photobiol a: Chem 290:86–93

    Article  CAS  Google Scholar 

  • Nakaoka Y, Katsumata H, Kaneco S, Suzuki T, Ohta K (2010) Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2. Desalin Water Treat 13(1–3):427–436

    Article  CAS  Google Scholar 

  • Noor, S., S. Sajjad, S. A. K. Leghari, I. Ahmad and T. Mahmood (2020). "Visible light efficient and photo stable nanostructure of GO/CuO/m-TiO2 ternary composite." Mater. Res. Express 6(12): 1250d1258.

  • Ohtani, B. (2011). Chapter 10 - photocatalysis by inorganic solid materials: revisiting its definition, concepts, and experimental procedures. Adv Inorg Chem. R. v. Eldik and G. Stochel, Academic Press. 63: 395–430.

  • Parastar S, Nasseri S, Borji SH, Fazlzadeh M, Mahvi AH, Javadi AH, Gholami M (2013) Application of Ag-doped TiO2 nanoparticle prepared by photodeposition method for nitrate photocatalytic removal from aqueous solutions. Desalin Water Treat 51(37–39):7137–7144

    Article  CAS  Google Scholar 

  • Phuong, N. M., N. C. Chu, D. V. Thuan, M. N. Ha, N. T. Hanh, H. D. T. Viet, N. T. M. Thu, P. V. Quan and N. T. T. Truc (2019). "Novel removal of diazinon pesticide by adsorption and photocatalytic degradation of visible light-driven Fe-TiO2 /Bent-Fe photocatalyst." J. Chem.

  • Rahimi-Nasrabadi, M., A. Ghaderi, H. R. Banafshe, M. Eghbali-Arani, M. Akbari, F. Ahmadi, S. Pourmasoud and A. Sobhani-Nasab (2019). "Preparation of Co2TiO4/CoTiO3/polyaniline ternary nano-hybrids for enhanced destruction of agriculture poison and organic dyes under visible-light irradiation." J. Mater. Sci.: Mater. Electron. 30(17): 15854–15868.

  • Rezaei R, Mohseni M (2017) Impact of pH on the kinetics of photocatalytic oxidation of 2,4-dichlorophenoxy acetic acid in a fluidized bed photocatalytic reactor. Appl Catal B 205:302–309

    Article  CAS  Google Scholar 

  • Rezaei, S. S., E. Dehghanifard, M. Noorisepehr, K. Ghadirinejad, B. Kakavandi and A. R. Esfahani (2019). "Efficient clean-up of waters contaminated with diazinon pesticide using photo-decomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure." Environ Manage. 250: 109472.

  • Salarian AA, Hami Z, Mirzaei N, Mohseni SM, Asadi A, Bahrami H, Vosoughi M, Alinejad A, Zare MR (2016) N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: optimization and modeling using a response surface methodology. J Mol Liq 220:183–191

    Article  CAS  Google Scholar 

  • Samy, M., M. G. Ibrahim, M. Fujii, K. E. Diab, M. ElKady and M. G. Alalm (2021). "CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor." Chem. Eng. J. 406: 127152.

  • Saraji M, Jafari MT, Amooshahi MM (2018) Sol–gel/nanoclay composite as a sorbent for microextraction in packed syringe combined with corona discharge ionization ion mobility spectrometry for the determination of diazinon in water samples. J Sep Sci 41(2):493–500

    Article  CAS  Google Scholar 

  • Sheydaei, M., M. Karimi and V. Vatanpour (2019). "Continuous flow photoelectrocatalysis/reverse osmosis hybrid reactor for degradation of a pesticide using nano N-TiO2/Ag/Ti electrode under visible light." J. Photochem. Photobiol. A: Chem. 384: 112068.

  • Shirzad-Siboni M, Jonidi-Jafari A, Farzadkia M, Esrafili A, Gholami M (2017) Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: kinetics and reaction pathways. Environ Manage 186:1–11

    CAS  Google Scholar 

  • Shirzad-Siboni M, Khataee A, Vahid B, Joo SW (2015) Synthesis, characterization and immobilization of ZnO nanosheets on scallop shell for photocatalytic degradation of an insecticide. Sci Adv Mater 7(4):806–814

    Article  CAS  Google Scholar 

  • Tabasideh S, Maleki A, Shahmoradi B, Ghahremani E, McKay G (2017) Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Sep Purif Technol 189:186–192

    Article  CAS  Google Scholar 

  • Toolabi A, Malakootian M, Ghaneian MT, Esrafili A, Ehrampoush MH, AskarShahi M, Tabatabaei M, Khatami M (2019) Optimizing the photocatalytic process of removing diazinon pesticide from aqueous solutions and effluent toxicity assessment via a response surface methodology approach. Rend Lincei Sci Fis Nat 30(1):155–165

    Article  Google Scholar 

  • Usman MR, Noviyanti AR, Eddy DR (2017) Photocatalytic degradation of diazinon using titanium oxide synthesized by alkaline solvent. Indones J Chem 17(1):22–29

    Article  CAS  Google Scholar 

  • Wang, S., H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, S. Tang, X. Yu and X. Zhao (2021). "Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal." Adv. Chem. Eng. 6: 100089.

  • Yang ZP, Gong XY, Zhang CJ (2010) Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications. Chem Eng Sci 165(1):117–121

    Article  CAS  Google Scholar 

  • Yap H, Pang Y, Lim S, Abdullah A, Ong H, Wu C-H (2019) A comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants. Int J Environ Sci Technol 16(1):601–628

    Article  CAS  Google Scholar 

  • Yousaf, F., F. Nadeem and A. El Zerey-Belaskri "Comparative analysis of conventional treatment methodologies and advanced processing techniques for reutilization of polluted ground water–a comprehensive review." Int. J. Chem. Biol. Sci.

  • Zangeneh H, Zinatizadeh AA, Feyzi M, Zinadini S, Bahnemann DW (2018) Photomineralization of recalcitrant wastewaters by a novel magnetically recyclable boron doped-TiO2-SiO2 cobalt ferrite nanocomposite as a visible-driven heterogeneous photocatalyst. J Environ Chem Eng 6(5):6370–6381

    Article  CAS  Google Scholar 

  • Zhang R, Wang J, Zhu X, Liu X, Liu H, Zhou Y, Dong S, La P, Yao J, Liu B (2020) Phase-separated Ce–Co–O catalysts for CO oxidation. Int J Hydrog Energy 45(23):12777–12786

    Article  CAS  Google Scholar 

  • Zhao H, Wu M, Liu J, Deng Z, Li Y, Su B-L (2016) Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst. Appl Catal B 184:182–190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authors of relevant papers who responded to emails and provided us with additional information on their work.

Funding

The study was funded by the Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran (Grant #48166). The funder had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Amir-Hossein Mahvi: conceptualization, critical revision, and editing of the manuscript.

Fateme Barjasteh-Askari: initial search, data extraction, manuscript drafting, data analysis, and interpretation.

Mojtaba Davoudi: initial search, data extraction, manuscript drafting, data analysis, and interpretation.

Ramin Nabizadeh: conceptualization, critical revision, and editing of the manuscript.

Simin Naseri: critical revision and editing of the manuscript.

Aliasghar Najafpoor: data analysis, interpretation, and critical revision of the manuscript.

Corresponding author

Correspondence to Amir-Hossein Mahvi.

Ethics declarations

Ethics approval

This study was approved by the Research Ethics Committee of Faculty of Health, Tehran University of Medical Sciences (IR.TUMS.SPH.REC.1400.196).

Consent to participate

Not applicable.

Consent for publication

All the authors read and approved the final version of the manuscript and consented to publish with this journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barjasteh-Askari, F., Nasseri, S., Nabizadeh, R. et al. Photocatalytic removal of diazinon from aqueous solutions: a quantitative systematic review. Environ Sci Pollut Res 29, 26113–26130 (2022). https://doi.org/10.1007/s11356-022-18743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18743-9

Keywords

Navigation