Skip to main content
Log in

Synthesis of reduced graphene oxide decorated with Sn/Na doped TiO2 nanocomposite: a photocatalyst for Evans blue dye degradation

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The major drawbacks associated with existed nanophotocatalyst are mild response, narrow spectrum range, hence speedy recombination of electrons, and holes subsequently less number of charge separation which leads to lower the overall efficiency of the catalyst. In order to overcome from this drawback, we have synthesized a nano-spherical shaped reduced graphene oxide NS-rGO (NC1) decorated with modified tin and sodium-doped titanium oxide nanocomposite NS-rGO@Sn/Na-doped-TiO2 (NC2). The synthesized NC2 decreases the probability of recombination of electrons and holes which is the necessary requirement for any photocatalyst and is rather, more advantageous compared to the reported photocatalyst which have demerits of speedy recombination of electrons and holes. The newly synthesized NC2 is used as an efficient photocatalyst for Evans blue dye degradation. This photocatalyst exhibits significant progress on light absorption, narrow band gap, active charge collection, and separation. The photocatalytic degradation of NC2 showed high activity in a short duration of time. The geometry of the NS-rGO facilitates collection and transporting of electrons in an effective photocatalytic dye degradation process. The investigation may lead to the development of novel photocatalyst for the degradation of toxic dye which is discharged into sewage from various chemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.S. Gupta, S.P. Shukla, G. Prasad, V.N. Singh, China clay as an adsorbent for dye house waste waters. Environ. Technol. 13, 925–936 (1992)

    Article  CAS  Google Scholar 

  2. O. Tunay, I. Kabdasli, G. Eremektar, D. Orhon, Color removal from textile wastewaters. Water Sci. Technol. 34, 9–16 (1996)

    Article  CAS  Google Scholar 

  3. K. Ivanov, E. Gruber, W. Schempp, D. Kirov, Possibilities of using zeolite as filler and carrier for dyestuffs in paper. Das Papier. 50, 456–460 (1996)

    CAS  Google Scholar 

  4. S.M.F. Cook, D.R. Linden, Use of Rhodamine WT to facilitate dilution and analysis of atrazine samples in short-term transport studies. J. Environ. Qual. 26, 1438–1440 (1997)

    Article  CAS  Google Scholar 

  5. R.W. Wagner, J.S. Lindsey, Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure Appl. Chem. 68, 1373–1380 (1996)

    Article  CAS  Google Scholar 

  6. D. Wrobel, A. Boguta, R.M. Ion, Mixtures of synthetic organic dyes in a photoelectrochemical cell. J. Photochem. Photobiol. A Chem. 138, 7–22 (2001)

    Article  CAS  Google Scholar 

  7. C. Scarpi, F. Ninci, M. Centini, C. Anselmi, High-performance liquid chromatography determination of direct and temporary dyes in natural hair colourings. J. Chromatogr. A 796, 319–325 (1998)

    Article  CAS  Google Scholar 

  8. M.S. Field, R.G. Wilhelm, J.F. Quinlan, T.J. Aley, An assessment of the potential adverse properties of fluorescent tracer dyes used for groundwater tracing. Environ. Monit. Assess. 38, 75–96 (1995)

    Article  CAS  Google Scholar 

  9. M. Neamtu, I. Siminiceanu, A. Yediler, A. Kettrup, Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. Dyes Pigments 53, 93–99 (2002)

    Article  CAS  Google Scholar 

  10. L. Gomathi Devi, S. Girish Kumar, K. Mohan, Reddy, C. Munikrishnappa, Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J. Hazard. Mater. 164, 459–467 (2009)

    Article  CAS  Google Scholar 

  11. D. Brown, B. Hamberger, The degradation of dyestuffs: Part III - Investigations of their ultimate degradability. Chemosphere. 16, 1539–1553 (1987)

    Article  CAS  Google Scholar 

  12. F. Kiriakidou, D.I. Kondarides, X.E. Verykios, The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal. Today 54, 119–130 (1999)

    Article  CAS  Google Scholar 

  13. K.S. Jithendra kumara, G. Krishnamurthy, B.E. Kumara swamy, N.D. Shashi kumar, S. Naika, B.S. Krishna, N. Naik, Terephthalic acid derived ligand-stabilized palladium nanocomposite catalyst for Heck coupling reaction: without surface-modified heterogeneous catalyst. Appl. Organomet. Chem. 31, 3549 (2017)

    Article  Google Scholar 

  14. M. Stylidi, D.I. Kondarides, X.E. Verykios, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl. Catal. B. 47, 189–201 (2004)

    Article  CAS  Google Scholar 

  15. P.C. Fung, K.M. Sin, S.M. Tsui, Decolorisation and degradation kinetics of reactive dye wastewater by a UV/ultrasonic/peroxide system. J. Soc. Dye. Colour. 116, 170–173 (2000)

    CAS  Google Scholar 

  16. E. Kusvuran, O. Gulnaz, S. Irmak, O.M. Atanur, H.I. Yavuz, O. Erbatur, Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. J. Hazard. Mater. 109, 85–93 (2004)

    Article  CAS  Google Scholar 

  17. K.S. Jitendra Kumara, G. Krishanmurthy, B.E. Kumara Swamy, N.S. Kumar, M. Kumar, Catalytic performance study of nano-cobalt catalyst for complement to the heck coupling reaction. J. Porous. Mater. 24, 1095–1103 (2017)

    Article  Google Scholar 

  18. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  19. M. Kazemi, M.R. Mohammadizadeh, Superhydrophilicity and photocatalytic enhancement of titania nano thin films. Appl. Surf. Sci. 257, 3780–3785 (2011)

    Article  CAS  Google Scholar 

  20. L. Spanhel, H. Weller, A. Henglein, Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632–6635 (1987)

    Article  CAS  Google Scholar 

  21. K.R. Gopidas, M. Bohorquez, P.V. Kamat, Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J. Phys. Chem. 94, 6435–6440 (1990)

    Article  CAS  Google Scholar 

  22. S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater. 143, 257–263 (2007)

    Article  CAS  Google Scholar 

  23. S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908–4911 (2003)

    Article  CAS  Google Scholar 

  24. K.S. Jithendra Kumara, G. Krishnamurthy, N.S. Kumar, N. Naik, T.M. Praveen, Sustainable synthesis of magnetically separable SiO2/Co@Fe2O4 nanocomposite and its catalytic applications for the benzimidazole synthesis. J. Magn. Magn. Mater. 451, 808–821 (2018)

    Article  CAS  Google Scholar 

  25. C.Y. Kuo, Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J. Hazard. Mater. 163, 239–244 (2009)

    Article  CAS  Google Scholar 

  26. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  27. S.H. Wang, S.Q. Zhou, Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J. Hazard. Mater. 185, 77–85 (2011)

    Article  CAS  Google Scholar 

  28. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. J. Am. Chem. Soc. 133, 10878–10884 (2011)

    Article  CAS  Google Scholar 

  29. J. Zhang, M. Zhang, C. Yang, X. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014)

    Article  CAS  Google Scholar 

  30. D. Chen, L. Zou, S. Li, F. Zheng, Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci. Rep. 6, 203–235 (2016)

    Google Scholar 

  31. Xiufeng, Z., Juan, L., Lianghai, L., Zuoshan, W., Preparation of crystalline Sn-doped TiO2 and its application in visible-light photocatalysis. J. Nanomaterials. (2011) Article id 432947. https://doi.org/10.1155/2011/432947

  32. T. Calvete, E.C. Lima, N.F. Cardoso, S.L.P. Dias, F.A. Pavan, Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution - kinetic, equilibrium, and thermodynamic studies. Chem. Eng. J. 155, 627–636 (2009)

    Article  CAS  Google Scholar 

  33. K.N.P. Kumar, K. Keizer, A.J. Burggraaf, Stabilization of the porous texture of nanostructured titania by avoiding a phase transformation. J. Mater. Sci. Lett. 13, 59–61 (1994)

    CAS  Google Scholar 

  34. H.M. Cheng, J.M. Ma, Z.G. Zhao, L.M. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663–671 (1995)

    Article  CAS  Google Scholar 

  35. V.B.R. Boppana, R.F. Lobo, Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. J. Catal. 281, 156–168 (2011)

    Article  CAS  Google Scholar 

  36. J. Lin, J.C. Yu, D. Lo, S.K. Lam, Photocatalytic activity of rutile Ti1 − xSnxO2 solid solutions. J. Catal. 183, 368–372 (1999)

    Article  CAS  Google Scholar 

  37. M. Hirano, H. Dozono, T. Kono, Hydrothermal synthesis and properties of solid solutions and composite nanoparticles in the TiO2-SnO2 system. Mater. Res. Bull. 46, 1384–1390 (2011)

    Article  CAS  Google Scholar 

  38. Y. Zhao, J. Liu, L.Y. Shi, S.A. Yuan, J.H. Fang, Z.Y. Wang, M.H. Zhang, Surfactant-free synthesis uniform Ti1−xSnxO2 nanocrystal colloids and their photocatalytic performance. Appl. Catal. B Environ. 100, 68–76 (2010)

    Article  CAS  Google Scholar 

  39. V. Stengl, D. Kralova, Photoactivity of brookite–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of hydrothermally prepared brookite. Mater. Chem. Phys. 129, 794–801 (2011)

    Article  CAS  Google Scholar 

  40. X. Li, Y. Tao, F. Li, M. Huang, Efficient preparation and characterization of functional graphene with versatile applicability. J. Harbin Inst. Technol. (New Series) 23(3), 1–29 (2016)

    Google Scholar 

  41. P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigments 68, 53–60 (2006)

    Article  CAS  Google Scholar 

  42. H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G. Zeng, Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 169, 933–940 (2009)

    Article  CAS  Google Scholar 

  43. A. Aguedach, S. Brosillon, J. Morvan, K. Lhadi El, Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. J. Hazard. Mater. 150, 250–256 (2008)

    Article  CAS  Google Scholar 

  44. R.W. Matthews, Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Res. 25, 1169–1176 (1991)

    Article  CAS  Google Scholar 

  45. APHA, Standard methods for the examination of water and waste water. America Water Works Association, New York (1989).

Download references

Acknowledgements

We are thankful to Vision Group on Science and Technology (VGST K-FIST L1) Government of Karnataka and UGC-SAP Phase-III, New Delhi and also STIC (Sophisticated Test and Instrumentation Centre), Cochin for spectral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishnamurthy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jithendra Kumara, K.S., Krishnamurthy, G., Walmik, P. et al. Synthesis of reduced graphene oxide decorated with Sn/Na doped TiO2 nanocomposite: a photocatalyst for Evans blue dye degradation. emergent mater. 4, 457–468 (2021). https://doi.org/10.1007/s42247-021-00206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00206-5

Keywords

Navigation