Skip to main content

Advertisement

Log in

Enzyme mediated synthesis of Ag–TiO2 photocatalyst for visible light degradation of reactive dye from aqueous solution

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop bio-inspired photocatalyst with solar light activity for textile dye degradation. Three TiO2 samples namely TiO2 (TiO2-A), biotemplated TiO2 (TiO2-B), and enzyme mediated Ag–TiO2 biotemplate (TiO2-C), were developed. The presence of anatase phase of TiO2 and silver in synthesized samples were confirmed using X-ray diffraction, field emission scanning electron microscopy, energy-dispersive spectroscopy, and UV–Vis–NIR spectroscopy. Photocatalytic efficiencies of these photocatalysts were evaluated by studying the oxidation of a commercial reactive dye (reactive black) under solar light irradiation in batch reactors. Photocatalytic efficiencies of the sample were compared using statistical tools like one-way ANOVA and Tukey test. The results confirmed that photocatalytic efficiency of TiO2-C was 40 % higher than that of TiO2-A under solar light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schulte AJ, Koch K, Spaeth M, Barthlott W (2009) Biomimetic replicas: transfer of complex architectures with different optical properties from plant surfaces onto technical materials. Acta Biomater 5:1848–1854

    Article  Google Scholar 

  2. Meyers MA, Chen P-Y, Lopez MI, Seki Y, Lin AYM (2011) Biological materials: a materials science approach. J Mech Behav Biomed Mater 4:626–657

    Article  Google Scholar 

  3. Ravindran A, Chandran P, Khan SS (2013) Biointerfaces biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces 105:342–352

    Article  CAS  Google Scholar 

  4. Gunasekar V, Gowdhaman D, Ponnusami V (2013) Biodegradation of reactive red M5B dye using Bacillus subtilis. Int J ChemTech Res 5:131–135

    CAS  Google Scholar 

  5. Ponnusami V, Gunasekar V, Srivastava SN (2009) Kinetics of methylene blue removal from aqueous solution using gulmohar (Delonix regia) plant leaf powder: multivariate regression analysis. J Hazard Mater 169:119–127

    Article  CAS  Google Scholar 

  6. Anjaneyulu Y, Sreedhara Chary N, Raj DSS (2005) Decolourization of Industrial effluents—available Methods and emerging technologies—a review. Rev Environ Sci Biotechnol 4:245–273

    Article  CAS  Google Scholar 

  7. Laasri L, Khalid Elamrani M, Cherkaoui O (2007) Removal of two cationic dyes from a textile effluent by filtration-adsorption on wood sawdust. Environ Sci Pollut Res Int 14:237–240

    Article  CAS  Google Scholar 

  8. Trujillo-Reyes J, Solache-Ríos M, Vilchis-Nestor A, Sánchez-Mendieta V, Colín-Cruz A (2012) Fe–Ni nanostructures and C/Fe–Ni composites as adsorbents for the removal of a textile dye from aqueous solution. Water Air Soil Pollut 223:1331–1341

    Article  CAS  Google Scholar 

  9. Beltrán-Heredia J, Sánchez-Martín J, Jiménez-Giles M (2011) Tannin-based coagulants in the depuration of textile wastewater effluents: elimination of anthraquinonic dyes. Water Air Soil Pollut 222:53–64

    Article  Google Scholar 

  10. Selvakumar S, Manivasagan R, Chinnappan K (2013) Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech 3:71–79

    Article  Google Scholar 

  11. Gümüş D, Akbal F (2011) Photocatalytic degradation of textile dye and wastewater. Water Air Soil Pollut 216:117–124

    Article  Google Scholar 

  12. Allen DW, Kartal N, Acar F, Sökmen M, Allen DW, Akkaş F, Kartal N, Acar F (2001) Photo-degradation of some dyes using Ag-loaded titaniumdioxide. Water Air Soil Pollut 132:153–163

    Article  Google Scholar 

  13. Sanoop PKK, Anas S, Ananthakumar S, Gunasekar V, Saravanan R, Ponnusami V (2012) Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation. Arab J Chem. doi:10.1016/j.arabjc.2012.04.023

    Google Scholar 

  14. Mills A, Le Hunte S (2000) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  Google Scholar 

  15. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  16. Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278

    Article  CAS  Google Scholar 

  17. Fujishima A, Zhang X, Tryk D (2008) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  Google Scholar 

  18. Rahimi R, Honarvar E (2012) Degradation of methylene blue via Co–TiO2 nano powders modified by meso-tetra (carboxyphenyl) porphyrin. J Sol–Gel Sci Technol 62:351–357

    Article  CAS  Google Scholar 

  19. Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569

    Article  CAS  Google Scholar 

  20. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  21. Singh D, Singh N, Dutta S (2011) Bandgap modification of TiO2 sol–gel films by Fe and Ni doping. J Sol–Gel Sci Technol 58:269–276

    Article  CAS  Google Scholar 

  22. Shen Y, Xiong T, Du H, Jin H, Shang J, Yang K, Photocatalysis VÁ (2009) Phosphorous, nitrogen, and molybdenum ternary co-doped TiO2: preparation and photocatalytic activities under visible light. J Sol–Gel Sci Technol 4:98–102

    Article  Google Scholar 

  23. Borlaf M, Poveda JM, Moreno R, Colomer MT (2012) Synthesis and characterization of TiO2/Rh3+ nanoparticulate sols, xerogels and cryogels for photocatalytic applications. J Sol–Gel Sci Technol 63:408–415

    Article  CAS  Google Scholar 

  24. Luo M, Gao J, Zhang X, Yang J, Hou G, Ouyang D, Jin Z (2007) Processing of porous TiN/C ceramics from biological templates. Mater Lett 61:186–188

    Article  CAS  Google Scholar 

  25. Dong Q, Su H, Zhang D, Liu Z, Lai Y (2007) Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol–gel technique. Microporous Mesoporous Mater 98:344–351

    Article  CAS  Google Scholar 

  26. Zhang W, Zhang D, Fan T, Ding J, Guo Q, Ogawa H (2006) Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates. Microporous Mesoporous Mater 92:227–233

    Article  Google Scholar 

  27. Chang L, Wei LI-C, Audia JP, Morton RA, Schellhorn HE (1999) Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol Microbiol 34:756–766

    Article  CAS  Google Scholar 

  28. Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  29. Suwanchawalit C, Wongnawa S, Sriprang P, Meanha P (2012) Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light. Ceram Int 38:5201–5207

    Article  CAS  Google Scholar 

  30. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413

    Article  CAS  Google Scholar 

  31. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74:328–335

    Article  CAS  Google Scholar 

  32. Mitchell CEJ, Howard A, Carney M, Egdell RG (2001) Direct observation of behaviour of Au nanoclusters on TiO2 (110) at elevated temperatures. Surf Sci 490:196–210

    Article  CAS  Google Scholar 

  33. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008

    Article  CAS  Google Scholar 

  34. Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2011) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B 82:513–517

    Article  CAS  Google Scholar 

  35. Sahoo C, Gupta AK, Pal A (2005) Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2. Desalin 181:91–100

    Article  CAS  Google Scholar 

  36. Senthilkumaar S, Porkodi K, Gomathi R, Maheswari AG, Manonmani N (2006) Sol–gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution. Dyes Pigment 69:22–30

    Article  CAS  Google Scholar 

  37. Rupa AV, Manikandan D, Divakar D, Sivakumar T (2007) Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J Hazard Mater 147:906–913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge SASTRA University for providing financial assistance through Prof. T. R. Rajagopalan research fund. The authors also thank Department of Science and Technology, Government of India for providing access to Surface Area Analyzer through Grant No: VI-D&P/267/08/09/TDT of Drugs and Pharmaceutical Research Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponnusami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunasekar, V., Divya, B., Brinda, K. et al. Enzyme mediated synthesis of Ag–TiO2 photocatalyst for visible light degradation of reactive dye from aqueous solution. J Sol-Gel Sci Technol 68, 60–66 (2013). https://doi.org/10.1007/s10971-013-3134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3134-2

Keywords

Navigation