Skip to main content

Advertisement

Log in

A review on transcriptomic and metabolomic responses of plants to nanopollution

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are tiny substances that can exist in the soil with different forms at different concentrations. In general, they present enormous effects on the growth, physiology, and molecular responses in plants. Indeed, they can penetrate the roots, stem, and leaves via different ways like stomata, plasmodesmata, xylem, and phloem and through transporter proteins like aquaporins. Once entered the plants, NPs induce reactive oxygen species (ROS) formation, and the plants respond to ROS by stimulates the production of antioxidants and antioxidant enzymes as well as the production of various primary and secondary metabolites like flavonoids and phenolic compounds. In addition, NPs have significantly affected the distribution of mineral profiles in plants. NPs considerably affect plant growth and yield in a dose-dependent fashion. At higher concentrations, they induced potent cytotoxicity and genotoxicity and thus reduced the growth and development of plants in turn decrease the yield. NPs exert potent changes in the transcriptome and metabolome pattern of plants to counteract the ROS imposed by NPs. This review depicts the overview of transcriptomic and metabolomic responses of plants towards nanopollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Al-Huqail AA, Hatata MM, Al-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25:313–319

    CAS  Google Scholar 

  • Almutairi ZM (2019) Plant molecular defense mechanisms promoted by nanoparticles against environmental stresses. Int J Agricul Biol 21:259–270

    CAS  Google Scholar 

  • Asgari-Targhi G, Iranbakhsh A, Ardebili ZO, Tooski AH (2021) Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) nanocomposite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. Int J Biol Macromol 189:170–182

    CAS  Google Scholar 

  • Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402. https://doi.org/10.1016/j.plaphy.2018.04.013

    Article  CAS  Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Leśne Prace Badawcze 76(4):350–359

    Google Scholar 

  • Banerjee, K., Pramanik, P., Maity, A., Joshi, D.C., Wani, S.H., Krishnan, P., 2019. Methods of using nanomaterials to plant systems and their delivery to plants (Mode of entry, uptake, translocation, accumulation, biotransformation and barriers), In: Advances in Phytonanotechnology. Elsevier, pp. 123–152.

  • Baskar V, Nayeem S, Kuppuraj SP, Muthu T, Ramalingam S (2018) Assessment of the effects of metal oxide nanoparticles on the growth physiology and metabolic responses in in vitro grown eggplant (Solanum melongena). 3 Biotech 8(8):362. https://doi.org/10.1007/s13205-018-1386-9

    Article  Google Scholar 

  • Baskar V, Safia N, Sree Preethy K, Dhivya S, Thiruvengadam M, Sathishkumar RA (2021) comparative study of phytotoxic effects of metal oxide (CuO, ZnO and NiO) nanoparticles on in-vitro grown Abelmoschus esculentus. Plant Biosyst 155(2):374–383

    Google Scholar 

  • Batool SU, Javed B, Sohail, Zehra SS, Mashwani ZU, Raja NI, Khan T, ALHaithloul HAS, Alghanem SM, Al-Mushhin AAM, Hashem M, Alamri S (2021) Exogenous applications of bio-fabricated silver nanoparticles to improve biochemical, antioxidant, fatty acid and secondary metabolite contents of sunflower. Nanomaterials 11(7):1750. https://doi.org/10.3390/nano11071750

    Article  CAS  Google Scholar 

  • Cai L, Cai L, Jia H, Liu C, Wang D, Sun X (2020) Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J Hazard Mat 393:122415. https://doi.org/10.1016/j.jhazmat.2020.122415

    Article  CAS  Google Scholar 

  • Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705. https://doi.org/10.1016/j.talanta.2014.08.050

    Article  CAS  Google Scholar 

  • Chamkhi I, Benali T, Aanniz T, Elmenyiy N, Guaouguaou F-E, El Omari N, El-Shazly M, Zengin G, Bouyahya A (2021) Plant-microbial interaction: the mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol Biochem 167:269–295. https://doi.org/10.1016/j.plaphy.2021.08.001

    Article  CAS  Google Scholar 

  • Chung IM, Rekha K, Venkidasamy B, Thiruvengadam M (2019) Effect of copper oxide nanoparticles on the physiology bioactive molecules and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut 230:48

    Google Scholar 

  • Chung IM, Venkidasamy B, Thiruvengadam M (2019) Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiol Biochem 139:92–101. https://doi.org/10.1016/j.plaphy.2019.03.010

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225. https://doi.org/10.1016/j.plaphy.2016.04.024

    Article  CAS  Google Scholar 

  • Dwivedi AD, Yoon H, Singh JP, Chae KH, Rho S, Hwang DS, Chang Y-S (2018) Uptake, distribution, and transformation of zerovalent iron nanoparticles in the edible plant Cucumis sativus. Environmental Sci Technol 52:10057–10066

    CAS  Google Scholar 

  • Ebadollahi R, Jafarirad S, Kosari-Nasab M, Mahjouri S (2019) Effect of explant source, perlite nanoparticles and TiO2/perlite nanocomposites on the phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Scientific Rep 9:1–15

    CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem S (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:678–686. https://doi.org/10.1007/s11099-017-0717-0

    Article  CAS  Google Scholar 

  • Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Sci Tot Env 466:503–512

    Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied Biochem Biotechnol 180:1076–1092

    CAS  Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biol Trace Elem Res 111:239–253. https://doi.org/10.1385/BTER:111:1:239

    Article  CAS  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341. https://doi.org/10.1186/s12864-015-1530-4

    Article  CAS  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:1–17

    Google Scholar 

  • García-Sánchez S, Gala M, Žoldák G (2021) Nanoimpact in plants: lessons from the transcriptome. Plants 10(4):751

    Google Scholar 

  • Garg R, Tyagi AK, Jain M (2012) Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice. Plant Signal Behav 7:951–956. https://doi.org/10.4161/psb.20910

    Article  CAS  Google Scholar 

  • Gazzarrini S, Mccourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Bot 91:605–612. https://doi.org/10.1093/aob/mcg064

    Article  CAS  Google Scholar 

  • Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zhou T, Rui Y, Xing B (2018) Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ Sci Nano 5:1685–1693. https://doi.org/10.1039/C8EN00014J

    Article  CAS  Google Scholar 

  • Hassan, H., Alatawi, A., Abdulmajeed, A., Emam, M., Khattab, H., 2021. Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. Horticulturae 7 (16).

  • Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, Valdés-Reyna J, Juárez-Maldonado A (2019) Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10):355. https://doi.org/10.3390/plants8100355

    Article  CAS  Google Scholar 

  • Hernández-Hernández H, Juárez-Maldonado A, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Sánchez-Aspeytia D, González-Morales S (2018) Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy 8:175. https://doi.org/10.3390/agronomy8090175

    Article  CAS  Google Scholar 

  • Hezaveh TA, Pourakbar L, Rahmani F, Hadi A (2019) Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L). Commun Soil Sci Plant Anal 50(6):698–715

    CAS  Google Scholar 

  • Hezaveh TA, Rahmani F, Alipour H, Pourakbar L (2020) Effects of foliar application of ZnO nanoparticles on secondary metabolite and micro-elements of camelina (Camelina sativa L.) under salinity stress. J Stress Physiol Biochem 16:54–69

    CAS  Google Scholar 

  • Hischemöller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5:278–284

    Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279. https://doi.org/10.1385/BTER:105:1-3:269

    Article  CAS  Google Scholar 

  • Hong FS, Yang P, Gao FQ, Liu C, Zheng L, Yang F, Zhou J (2005) Effect of nano-anatase TiO2 on spectral characterization of photosystem II particles from spinach. Chem Res Chin Univ 21:196–200

    CAS  Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16(11):26644–26653

    CAS  Google Scholar 

  • Jalil, S.U., Ansari, M. I. 2019. Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms. Plant Signaling Molecules 549–561.

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447

    CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Env Sci Technol 39:1378–1383

    CAS  Google Scholar 

  • Jiang F, Shen Y, Ma C, Zhang X, Cao W, Rui Y (2017) Effects of TiO2 nanoparticles on wheat (Triticum aestivum L) seedlings cultivated under super-elevated and normal CO2 conditions. PLOS ONE 12:e0178088

    Google Scholar 

  • Jośko I, Oleszczuk P, Skwarek E (2017) Toxicity of combined mixtures of nanoparticles to plants. J Hazard Mat 331:200–209. https://doi.org/10.1016/j.jhazmat.2017.02.028

    Article  CAS  Google Scholar 

  • Katiyar P, Yadu B, Korram J, Satnami ML, Kumar M, Keshavkant S (2020) Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. J Env Sci 92:18–27. https://doi.org/10.1016/j.jes.2020.02.013

    Article  Google Scholar 

  • Keller AA, Huang Y, Nelson J (2018) Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J Nanopart Res 20:101. https://doi.org/10.1007/s11051-018-4192-8

    Article  CAS  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, Ali S, Huang L (2020) Amelioration of salt-induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt-tolerant capacity. Plant Physiol Biochem 156:221–232. https://doi.org/10.1016/j.plaphy.2020.09.018

    Article  CAS  Google Scholar 

  • Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C (2019) Nanoparticle–plant interactions: two-way traffic. Small 15:1901794

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    CAS  Google Scholar 

  • Khan, Z., & Upadhyaya, H. (2019). Impact of nanoparticles on abiotic stress responses in plants: an overview. Nanomaterials in plants, algae and microorganisms, 305–322.

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mat 241–242:55–62. https://doi.org/10.1016/j.jhazmat.2012.08.059

    Article  CAS  Google Scholar 

  • Lavanya R, Arun V (2021) Detection of Begomovirus in chilli and tomato plants using functionalized gold nanoparticles. Sci Rep 11:14203. https://doi.org/10.1038/s41598-021-93615-9

    Article  CAS  Google Scholar 

  • Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Env Toxicol Chem 27:1915–1921

    CAS  Google Scholar 

  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76. https://doi.org/10.1007/s12011-007-0047-3

    Article  CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant Stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79. https://doi.org/10.1007/s12011-007-8028-0

    Article  CAS  Google Scholar 

  • Li C, Wang P, Lombi E, Cheng M, Tang C, Howard DL, Menzies NW, Kopittke PM (2018) Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. J Exp Bot 69:2717–2729

    CAS  Google Scholar 

  • Li D, An Q, Wu Y, Li JQ, Pan C (2020) Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustainable Chemistry & Engineering 8(28):10502–10510

    CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Env Sci Technol 42:5580–5585

    CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    CAS  Google Scholar 

  • Lu L, Huang M, Huang Y, Corvini PF-X, Ji R, Zhao L (2020) Mn 3 O 4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Env Sci Nano 7:1692–1703

    CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Tot Env 408:3053–3061

    CAS  Google Scholar 

  • Madani, B., Mirshekari, A., & Imahori, Y. (2019). Physiological responses to stress. In Postharvest physiology and biochemistry of fruits and vegetables (pp. 405–423). Woodhead Publishing.

  • Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein- nanoparticle interactions: opportunities and challenges. Chemical Rev 111:5610–5637

    CAS  Google Scholar 

  • Mapara N, Sharma M, Shriram V, Bharadwaj R, Mohite KC, Kumar V (2015) Antimicrobial potentials of Helicteres isora silver nanoparticles against extensively drug-resistant (XDR) clinical isolates of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 99:10655–10667

    CAS  Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832

    Google Scholar 

  • Mirakhorli T, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021) Bulk and nanoparticles of zinc oxide exerted their beneficial effects by conferring modifications in transcription factors, histone deacetylase carbon and nitrogen assimilation antioxidant biomarkers and secondary metabolism in soybean. Plos one 16(9):e0256905

    CAS  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Mantri NL (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61:768–775. https://doi.org/10.1134/S1021443714050124

    Article  CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles - A review. Trop J Pharm Res 5:561–573. https://doi.org/10.4314/tjpr.v5i1.14634

    Article  Google Scholar 

  • Nair, P.M.G, Kim, S.-H., Chung, I.M., 2014. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol. Plant. 36. https://doi.org/10.1007/s11738-014-1667-9

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    CAS  Google Scholar 

  • Neysanian M, Iranbakhsh A, Ahmadvand R, Oraghi Ardebili Z, Ebadi M (2020) Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity fruit quality and postharvest longevity through modifying nutrition metabolism, and gene expression in tomato; potential benefits and risk assessment. PloS one 15(12):e0244207

    CAS  Google Scholar 

  • Ochoa L, Medina-Velo IA, Barrios AC, Bonilla-Bird NJ, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Modulation of CuO nanoparticles toxicity to green pea (Pisum sativum Fabaceae) by the phytohormone indole-3-acetic acid. Sci Tot Env 598:513–524. https://doi.org/10.1016/j.scitotenv.2017.04.063

    Article  CAS  Google Scholar 

  • Paranjpe M, Neuhaus V, Finke JH, Richter C, Gothsch T, Kwade A, Büttgenbach S, Braun A, Müller-Goymann CC (2013) In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles. Inhalation Toxicol 25:536–543. https://doi.org/10.3109/08958378.2013.810315

    Article  CAS  Google Scholar 

  • Pérez-de-Luque, A, Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front. Environ. Sci. 10, 2017. https://doi.org/10.3389/fenvs.2017.00012

  • Péret B, Clément M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trend Plant Sci 16:442–450. https://doi.org/10.1016/j.tplants.2011.05.006

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328. https://doi.org/10.1007/s12011-013-9833-2

    Article  CAS  Google Scholar 

  • Qi P-F, Jiang Y-F, Guo Z-R, Chen Q, Ouellet T, Zong L-J, Wei Z-Z, Wang Y, Zhang Y-Z, Xu B-J, Kong L, Deng M, Wang J-R, Chen G-Y, Jiang Q-T, Lan X-J, Li W, Wei Y-M, Zheng Y-L (2019) Transcriptional reference map of hormone responses in wheat spikes. BMC Genomics 20:390. https://doi.org/10.1186/s12864-019-5726-x

    Article  CAS  Google Scholar 

  • Rai M, Ingle AP, Pandit R, Paralikar P, Shende S, Gupta I, Biswas JK, da Silva SS (2018) Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnol Rev 7:303–315

    CAS  Google Scholar 

  • Rajaee Behbahani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Red elemental selenium nanoparticles mediated substantial variations in growth tissue differentiation, metabolism gene transcription, epigenetic cytosine DNA methylation and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. PloS one 15(7):e0235556

    CAS  Google Scholar 

  • Rezaei Z, Jafarirad S, Kosari-Nasab M (2019) Modulation of secondary metabolite profiles by biologically synthesized MgO/perlite nanocomposites in Melissa officinalis plant organ cultures. J Hazard Mat 380:120878

    CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498. https://doi.org/10.1021/jf104517j

    Article  CAS  Google Scholar 

  • Rivero-Montejo SDJ, Vargas-Hernandez M, Torres-Pacheco I (2021) Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants. Agriculture 11(2):134

    CAS  Google Scholar 

  • Safawo T, Sandeep BV, Pola S, Tadesse A (2018) Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano 3:56–63

    Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol 7:120

    Google Scholar 

  • Satti SH, Raja NI, Javed B, Akram A, Mashwani ZUR, Ahmad MS, Ikram M (2021) Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. Plos one 16(2):e0246880

    CAS  Google Scholar 

  • Shang H, Ma C, Li C, White JC, Polubesova T, Chefetz B, Xing B (2020) Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L) by multiple mechanisms: contact-mortality nutritional modulation and phytohormone regulation. Environ Sci: Nano 7:2632–2643

    CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver Nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233. https://doi.org/10.1007/s12010-012-9759-8

    Article  CAS  Google Scholar 

  • Shukla, P.K., Misra, P., Kole, C., 2016. Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. Plant Nanotechnol. 183–218.

  • Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89(3):289–317

    CAS  Google Scholar 

  • Singh A, Tiwari S, Pandey J, Lata C, Singh IK (2021) Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol 337:57–70

    CAS  Google Scholar 

  • Singla, J., Krattinger, S. G., Wrigley, C. W., Faubion, J., Corke, H., & Seetharaman, K. (2016). Biotic stress resistance genes in wheat.

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152. https://doi.org/10.1002/etc.1933

    Article  CAS  Google Scholar 

  • Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Selenium nanoparticles induced variations in growth morphology anatomy biochemistry gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environmental Pollution 265:114727

    CAS  Google Scholar 

  • Sri Sindhura K, Prasad TNVKV, Panner Selvam P, Hussain OM (2014) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci 4:819–827. https://doi.org/10.1007/s13204-013-0263-4

    Article  CAS  Google Scholar 

  • Su M, Mingyu S, Wu X, Xiao W, Liu C, Chao L, Qu C, Chunxiang Q, Liu X, Xiaoqing L, Chen L, Liang C, Huang H, Hao H, Hong F, Fashui H (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119:183–192. https://doi.org/10.1007/s12011-007-0065-1

    Article  CAS  Google Scholar 

  • Sun J, Wang L, Li S, Yin L, Huang J, Chen C (2017) Toxicity of silver nanoparticles to Arabidopsis: inhibition of root gravitropism by interfering with auxin pathway. Env Toxicol Chem 36:2773–2780. https://doi.org/10.1002/etc.3833

    Article  CAS  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793. https://doi.org/10.1371/journal.pone.0093793

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung IM (2015) Physiological metabolic and transcriptional effects of biologically synthesized silver nanoparticles in turnip (Brassica rapa ssp rapa L). Protoplasma 252(4):1031–46. https://doi.org/10.1007/s00709-014-0738-5

    Article  CAS  Google Scholar 

  • Tian L, Shen J, Sun G, Wang B, Ji R, Zhao L (2020) Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the Pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Env Sci Technol 54:13137–13146

    CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutrition 39(2):172–180

    CAS  Google Scholar 

  • Upadhyaya H, Roy H, Shome S, Tewari S, Bhattacharya MK, Panda SK (2017) Physiological impact of zinc nanoparticle on germination of rice (Oryza sativa L) seed. J Plant Sci Phytopathol 1:062–070. https://doi.org/10.29328/journal.jpsp.1001008

    Article  Google Scholar 

  • Varela-Valencia R, Gómez-Ortiz N, Oskam G, de Coss R, Rubio-Piña J, del Río-García M, Albores-Medina A, Zapata-Perez O (2014) The effect of titanium dioxide nanoparticles on antioxidant gene expression in tilapia (Oreochromis niloticus). J Nanopart Res 16:2369. https://doi.org/10.1007/s11051-014-2369-3

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69. https://doi.org/10.1016/j.plaphy.2016.08.022

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    CAS  Google Scholar 

  • Wang P, Lombi E, Zhao F-J, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    CAS  Google Scholar 

  • Wang, Y., Chen, S., Deng, C., Shi, X., Cota-Ruiz, K., White, J.C., Zhao, L., Gardea-Torresdey, J.L., 2021. Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact 100336.

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Env Sci Technol 43:5290–5294

    CAS  Google Scholar 

  • Wu T, Liu Y, Yang K, Zhu L, White JC, Lin D (2021) Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community. Env Sci Nano 8:986–999

    CAS  Google Scholar 

  • Xiong T, Zhang S, Kang Z, Zhang T, Li S (2021) Dose-dependent physiological and transcriptomic responses of lettuce (Lactuca sativa L) to copper oxide nanoparticles—insights into the phytotoxicity mechanisms. Int J Mol Sci 22:3688. https://doi.org/10.3390/ijms22073688

    Article  CAS  Google Scholar 

  • Yan L, Li P, Zhao X, Ji R, Zhao L (2020) Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci Tot. Env 718:137400

    CAS  Google Scholar 

  • Ye Y, Medina-Velo IA, Cota-Ruiz K, Moreno-Olivas F, Gardea-Torresdey JL (2019) Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicol Env Saf 184:109671. https://doi.org/10.1016/j.ecoenv.2019.109671

    Article  CAS  Google Scholar 

  • Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi H-K, Arshad M (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agricul Food Chem 65:5598–5606

    CAS  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141. https://doi.org/10.1007/s12011-010-8901-0

    Article  CAS  Google Scholar 

  • Zhang H, Chen S, Jia X, Huang Y, Ji R, Zhao L (2021) Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci Tot Env 752:142264

    CAS  Google Scholar 

  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    Google Scholar 

  • Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697. https://doi.org/10.1016/j.envpol.2018.04.066

    Article  CAS  Google Scholar 

  • Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA (2016) 1H NMR and GC-MS-based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Env Sci Technol 50:2000–2010

    CAS  Google Scholar 

  • Zhao L, Zhang H, White JC, Chen X, Li H, Qu X, Ji R (2019) Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Env Sci Nano 6:1716–1727

    CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92. https://doi.org/10.1385/BTER:104:1:083

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Env Monit 10:713–717

    CAS  Google Scholar 

  • Zhu J, Li J, Shen Y, Liu S, Zeng N, Zhan X, White JC, Gardea-Torresdey J, Xing B (2020) Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Env Sci Nano 7:3901–3913

    CAS  Google Scholar 

Download references

Funding

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Contributions

M.T and B.V, conceived the review idea. A.B., N.E.O., M.H., N.E.M., T.B., D.K., M.K., and I.C. focus drafted the original article, reference collection, and critically revised the article. M.A.S was involved in drawing figures. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Baskar Venkidasamy or Muthu Thiruvengadam.

Ethics declarations

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouyahya, A., El Omari, N., Hakkour, M. et al. A review on transcriptomic and metabolomic responses of plants to nanopollution. Environ Sci Pollut Res 29, 22913–22929 (2022). https://doi.org/10.1007/s11356-022-18659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18659-4

Keywords

Navigation