Skip to main content
Log in

Ornamental plants adapted to urban ecosystem pollution: lawn grasses tolerating deicing reagents

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Deicing reagents are priority soil pollutants in urban ecosystems. Sodium chloride is one of the priority deicing reagents. Sodium chloride is limiting the spread of lawn grass. We first showed the possibility of using environmental biotechnology in urban greening to obtain lawn grasses tolerant of sodium chloride. We have developed a cell selection technology to obtain salt-tolerant lawn grasses. A cell selection scheme with 1% sodium chloride was used. Most of the tested regenerants were more tolerant to NaCl than original plants. The descendants of the studied regenerants demonstrated the preservation of salt resistance. Most of the descendants of the regenerants Agrostis stolonifera retained high decorative qualities under salinity conditions. The tolerance remained in the next five generations. The descendants of the most salt-tolerant clones Agrostis stolonifera demonstrated resistance to 1% sodium chloride concentration in soil. These plants can serve as the basis for the creation of new salt-tolerant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Asensio E, Ferreira VJ, Gil G, García-Armingol T, López-Sabirón AM, Ferreira G (2017) Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways. Int J Environ Res Public Health 14(12):1498. https://doi.org/10.3390/ijerph14121498

    Article  CAS  Google Scholar 

  • Ayaz M, Varol N, Yolcu S, Pelvan A, Kaya Ü, Aydoğdu E, Bor M, Özdemir F, Türkan İ (2021) Three (Turkish) olive cultivars display contrasting salt stress-coping mechanisms under high salinity. Trees. 35:1283–1298. https://doi.org/10.1007/s00468-021-02115-w

    Article  CAS  Google Scholar 

  • Campanelli A, Ruta C, Morone-Fortunato I, Mastro G (2013) Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection. Cent Eur J Biol 8:765–776. https://doi.org/10.2478/s11535-013-0194-1

    Article  CAS  Google Scholar 

  • Clarke N, Fuksová K, Gryndler M, Lachmanová Z, Liste HH, Rohlenová J, Schroll R, Schröder P, Matucha M (2009) The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environ Sci Pollut Res 16:127–143. https://doi.org/10.1007/s11356-008-0090-4

    Article  CAS  Google Scholar 

  • Fan Y, Weisberg PJ, Nowak RS (2014) Spatio-temporal analysis of remotely-sensed forest mortality associated with road de-icing salts. Sci Total Environ 472:929–938. https://doi.org/10.1016/j.scitotenv.2013.11.103 Epub 2013 Dec 15.PMID: 24342100

    Article  CAS  Google Scholar 

  • Gai YP, Ji XL, Lu W, Han XJ, Yang GD, Zheng CC (2011) A novel late embryogenesis abundant like protein associated with chilling stress in Nicotiana tabacum cv. bright yellow-2 cell suspension culture. Mol Cell Proteomics 10:M111.010363

    Article  Google Scholar 

  • Gałuszka A, Migaszewski ZM, Podlaski R, Dołęgowska S, Michalik A (2011) The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environ Monit Assess 176:451–464. https://doi.org/10.1007/s10661-010-1596-z

    Article  CAS  Google Scholar 

  • Gladkov EA, Dolgikh YI, Gladkova OV (2014) In vitro selection for tolerance to soil chloride salinization in perennial grasses. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology) 4:106–111

    Google Scholar 

  • Gladkov EA, Tashlieva II, Gladkova OV (2021) Ornamental plants adapted to urban ecosystem pollution: lawn grasses and painted daisy tolerating copper. Environ Sci Pollut Res 28:14115–14120. https://doi.org/10.1007/s11356-020-11423-6

    Article  CAS  Google Scholar 

  • Gladkov EA, Gladkova OV (2020) Cell selection to increase zinc resistance. P-2061. Meeting abstract. Plant Posters. In Vitro Cell. Dev.Biol.-Animal. 56. https://doi.org/10.1007/s11626-020-00455-4

  • Gladkov EA, Gladkova OV (2021a) Ecological problems of the use of deicing reagents and lawn grasses. Ecological Readings - 2021. Collection of materials of the XII National Conference, 174-179

  • Gladkov EA, Gladkova OV (2021b) Cell Selection to Increase Deicing Reagents Resistance. P-2024. Meeting abstract. Plant Posters. In Vitro Cell Dev Biol-Animal 10. https://doi.org/10.1007/s11626-021-00567-5

  • Glagolev S, Anastasia S, Svetlana S (2018) Basis for application of new-generation anti-icing materials as an efficient way to reduce the accident rate on roads in winter. Transp Res Procedia 36:193–198

    Article  Google Scholar 

  • He S, Han Y, Wang Y, Zhai H, Liu Q (2009) In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74. https://doi.org/10.1007/s11240-008-9461-2

    Article  CAS  Google Scholar 

  • Kahraman M, Sevim G, Bor M (2019) The role of proline, glycinebetaine, and trehalose in stress-responsive gene expression. In: Hossain M, Kumar V, Burritt D, Fujita M, Mäkelä P (eds) Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Cham

  • Kashyap SP, Kumari N, Mishra P, Moharana DP, Aamir M (2021) Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: perspectives and challenges. Genet Resour Crop Evol 68:2207–2233. https://doi.org/10.1007/s10722-021-01174-9

    Article  Google Scholar 

  • Mastalerczuk G, Borawska-Jarmułowicz B, Kalaji HM (2019) How Kentucky bluegrass tolerate stress caused by sodium chloride used for road de-icing? Environ Sci Pollut Res 26:913–922. https://doi.org/10.1007/s11356-018-3640-4

    Article  CAS  Google Scholar 

  • Marcum KB (2014) Salinity tolerant turfgrasses for biosaline urban landscape agriculture. In: Khan M.A., Böer B., Öztürk M., Al Abdessalaam T.Z., Clüsener-Godt M., Gul B. (eds) Sabkha ecosystems. Tasks for Vegetation Science, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7411-7_15

  • Munns R (2005) Genes and salt tolerance: bringing them together. The New Phytologist 167:645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abioti stress in plants: a complex relationship. Front Plant Sci 5:175. https://doi.org/10.3389/fpls.2014.00175

    Article  Google Scholar 

  • Niedrist GH, Cañedo-Argüelles M, Cauvy-Fraunié S (2021) Salinization of Alpine rivers during winter months. Environ Sci Pollut Res 28:7295–7306. https://doi.org/10.1007/s11356-020-11077-4

    Article  CAS  Google Scholar 

  • Nikiforova EM, Kosheleva NE, Vlasov DV (2014) Monitoring of salinization of snow and soils in the eastern district of Moscow with deicing mixtures. Basic Res 11-2:340–347

    Google Scholar 

  • Ordóñez-Barona C, Sabetski V, Millward AA, Steenberg J (2018) De-icing salt contamination reduces urban tree performance in structural soil cells. J Environ Pollut Mar 234:562–571. https://doi.org/10.1016/j.envpol.2017.11.101

    Article  CAS  Google Scholar 

  • Patykowski J, Kołodziejek J, Wala M Peer J. (2018) Biochemical and growth responses of silver maple (Acer saccharinum L.) to sodium chloride and calcium chloride. 6:e5958. https://doi.org/10.7717/peerj.5958.

  • Rout GR, Senapati SK, Panda JJ (2008) Selection of salt tolerant plants of Nicotiana tabacum L. Through in vitro and its biochemical characterization. Biologia futura 59:77–92. https://doi.org/10.1556/ABiol.59.2008.1.7

    Article  CAS  Google Scholar 

  • Qian R, Ma X, Zhang X, Hu Q, Liu H, Zheng J (2021) Effect of exogenous spermidine on osmotic adjustment, antioxidant enzymes activity, and gene expression of Gladiolus gandavensis seedlings under salt stress. J Plant Growth Regul 40:1353–1367. https://doi.org/10.1007/s00344-020-10198-x

    Article  CAS  Google Scholar 

  • Queirós F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734. https://doi.org/10.1007/s10535-007-0149-y

    Article  Google Scholar 

  • Roy SJ, Tester M (2013) Increasing salinity tolerance of crops. In: Christou P., Savin R., Costa-Pierce B.A., Misztal I., Whitelaw C.B.A. (eds) Sustainable food production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_429

  • Sudhersan C, Jibi MS, Ashkanani J, Al-Ajeel A (2012) In vitro screening of potato cultivars for salinity tolerance. Am -Eurasian J Sustain Agric 6(4):344–348

    Google Scholar 

  • Willmert HM, Osso JD Jr, Twiss MR, Langen TAJ (2018) Winter road management effects on roadside soil and vegetation along a mountain pass in the Adirondack Park, New York, USA. Environ Manag 225:215–223. https://doi.org/10.1016/j.jenvman.2018.07.085

    Article  CAS  Google Scholar 

  • Yuan S, Zhao J, Li Z, Hu Q, Yuan N, Zhou M, Xia X, Noorai R, Saski C, Li S, Luo H (2019) MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Hortic Res 6:48

    Article  Google Scholar 

  • Zamin M, Khattak AM, Salim AM, Marcum KB, Shakur M, Shah S, Jan I, Fahad S (2019) Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environ Sci Pollut Res 26:13410–13421. https://doi.org/10.1007/s11356-019-04838-3

    Article  CAS  Google Scholar 

  • Zamin M, Fahad S, Khattak AM, Adnan M, Wahid F, Raza A, Wang D, Saud S, Noor M, Bakhat HF, Mubeen M, Hammad HM, Soliman MH, Elkelish AA, Riaz M, Nasim W (2020) Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environ Sci Pollut Res 27:39702–39716. https://doi.org/10.1007/s11356-019-06218-3

    Article  CAS  Google Scholar 

  • Zhang Q, Zuk A, Rue K (2013) Salinity tolerance of nine fine fescue cultivars compared to other cool-season turfgrasses. Sci Hortic 159:67–71

    Article  CAS  Google Scholar 

  • Zítkova J, Hegrova J, Keken Z, Ličbinsky R (2021) Impact of road salting on Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Ecol Eng 159:106–129. https://doi.org/10.1016/j.ecoleng.2020.106-129

    Article  Google Scholar 

Download references

Funding

Part of research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme 121050500047-5). 

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Evgeny Aleksandrovich Gladkov, Olga Victorovna Gladkova

Methodology: Evgeny Aleksandrovich Gladkov, Olga Victorovna Gladkova

Experimental work: Evgeny Aleksandrovich Gladkov, Olga Victorovna Gladkova

Writing: Evgeny Aleksandrovich Gladkov, Olga Victorovna Gladkova

Corresponding authors

Correspondence to Evgeny Aleksandrovich Gladkov or Olga Victorovna Gladkova.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkov, E.A., Gladkova, O.V. Ornamental plants adapted to urban ecosystem pollution: lawn grasses tolerating deicing reagents. Environ Sci Pollut Res 29, 22947–22951 (2022). https://doi.org/10.1007/s11356-021-16355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16355-3

Keywords

Navigation