Skip to main content

Advertisement

Log in

The formation and fate of chlorinated organic substances in temperate and boreal forest soils

  • AREA 1 • TERRESTRIAL ECOLOGY AND BIOLOGY • REVIEW ARTICLE
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim and scope

Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed.

Results

Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how.

Discussion

The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary.

Conclusions and perspectives

More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aamlid D, Horntvedt R (2002) Sea salt impact on forests in western Norway. Forestry 75:171–178

    Google Scholar 

  • Alexander M (1995) How toxic are toxic chemicals in soils? Environ Sci Technol 29:2713–2717

    CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation. Academic, San Diego, p 453

    Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    CAS  Google Scholar 

  • Anderson TA, Walton BT (1995) Comparative fate of [14C]trichloroethylene in the root zone of plants from a former solvent disposal site. Environ Toxicol Chem 14:2041–2047

    CAS  Google Scholar 

  • Asplund G (1995) Origin and occurrence of halogenated organic matter in soil. In: Grimvall A, de Leer EWB (eds) Naturally-produced organohalogens. Kluwer, Dordrecht, pp 35–48

    Google Scholar 

  • Asplund G, Grimvall A (1991) Organohalogens in nature, more widespread than previously assumed. Environ Sci Technol 25:1346–1350

    CAS  Google Scholar 

  • Bardyshev II, Ya G, Zen’ko RI (1970) Properties and chemical composition of colophony and turpentine produced from Bulgarian oleoresin from Pinus sylvestris and Pinus nigra. Biologia 8:113–120

    CAS  Google Scholar 

  • Barriuso E, Houot S (1996) Rapid mineralization of the s-triazine ring of atrazine in soils in relation to soil management. Soil Biol Biochem 28:1341–1348

    CAS  Google Scholar 

  • Bastviken D, Sandén P, Svensson T, Ståhlberg C, Magounakis M, Öberg G (2006) Chloride retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads. Environ Sci Technol 40:2977–2982

    CAS  Google Scholar 

  • Bastviken D, Thomsen F, Svensson T, Karlsson S, Sandén P, Shaw G, Matucha M, Öberg G (2007) Chloride retention in forest soil by microbial uptake and by natural formation of organochlorines. Geochim Cosmochim Acta 71:3182–3192

    CAS  Google Scholar 

  • Berggren Kleja D, Svensson M, Majdi H, Jansson P-E, Langvall O, Bergkvist B, Johansson M-B, Weslien P, Truusb L, Lindroth A, Ågren GI (2008) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 89:7–25

    Google Scholar 

  • Biester H, Keppler F, Putschew A, Martinez-Cortizas A, Petri M (2004) Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean Peat Bogs. Environ Sci Technol 38:1984–1991

    CAS  Google Scholar 

  • Bleeker A, Draaijers G, van der Veen D, Erisman JW, Möls H, Fonteijn P, Geusebroek M (2003) Field intercomparison of throughfall measurements performed within the framework of the Pan European intensive monitoring program of EU/ICP Forest. Environ Pollut 125:123–138

    CAS  Google Scholar 

  • Boerner REJ, Brinkman JA (2003) Fire frequency and soil enzyme activity in southern Ohio oak–hickory forests. Appl Soil Ecol 23:137–146

    Google Scholar 

  • Boerner REJ, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biol Biochem 37:1419–1426

    CAS  Google Scholar 

  • Bollag JM (1972) Biochemical transformation of pesticides by soil fungi. CRC Crit Rev Microbiol 2:35–58

    CAS  Google Scholar 

  • Couch RW, Gramlich JV, Davis DE, Funderburk HH Jr (1965) The metabolism of atrazine and simazine by soil fungi. Proc South Weed Conf 18:623–631

    CAS  Google Scholar 

  • Covington WW (1981) Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–48

    Google Scholar 

  • Cox ML, Sturrock GA, Fraser PJ, Siems ST, Krummel PB, O’Doherty S (2003) Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania, 1998–2000. J Atmos Chem 45:79–99

    CAS  Google Scholar 

  • Crawford RL, Hess TF, Paszczynski A (2004) Combined biological and abiological degradation of xenobiotic compounds. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, Heidelberg, pp 251–278

    Google Scholar 

  • de Jong E, Field JA (1997) Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes. Annu Rev Microbiol 51:375–414

    Google Scholar 

  • de Wever H, Cole JR, Fettig MR, Hogan DA, Tiedje JM (2000) Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl Environ Microbiol 66:2297–2301

    Google Scholar 

  • Erisman JW, Möls H, Fonteijn P, Geusebroek M, Draaijers G, Bleeker A, van der Veen D (2003) Field intercomparison of precipitation measurements performed within the framework of the Pan European intensive monitoring program of EU/ICP Forest. Environ Pollut 125:139–155

    CAS  Google Scholar 

  • Fahimi IJ, Keppler F, Schöler HF (2003) Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52:513–520

    CAS  Google Scholar 

  • Ferrari RP, Laurenti E, Trotta F (1999) Oxidative 4-dechlorination of 2,4,6-trichlorophenol catalyzed by horseradish peroxidase. J Biol Inorg Chem 4:232–237

    CAS  Google Scholar 

  • Field JA, Sierra R (2003) Review of scientific literature on chlorination and dechlorination of key chlorinated compounds. 9th Quarterly Report, Eurochlor

  • Fritsche W (1998) Umwelt-Mikrobiologie. Gustav Fischer, Jena, p 252

    Google Scholar 

  • Gawlik BM, Sotiriou N, Feicht EA, Schulte-Hostede S, Kettrup A (1997) Alternatives for the determination of the soil adsorption coefficient, Koc, of non-ionic organic compounds—a review. Chemosphere 34:2525–2551

    CAS  Google Scholar 

  • Graedel TE, Keene WC (1996) The budget and cycle of Earth’s natural chlorine. Pure Appl Chem 68:1689–1697

    CAS  Google Scholar 

  • Gribble GW (1998) The natural production of organochlorine compounds. In: Turoski V (ed) Chlorine and chlorine compounds in the paper industry. CRC, Boca Raton, FL, pp 89–108

    Google Scholar 

  • Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    CAS  Google Scholar 

  • Grimalt JO, van Drooge BL, Ribes A, Vilanova RM, Fernandez P, Appleby P (2004) Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 54:1549–1561

    CAS  Google Scholar 

  • Gryndler M, Rohlenová J, Kopecky J, Matucha M (2008) Chloride concentration affects soil microbial community. Chemosphere 71:1401–1408

    CAS  Google Scholar 

  • Haas R, Tsivunchyk O, Steinbach K, Löw E, Scheibner K, Hofrichter M (2004) Conversion of adamsite (phenarsarzin chloride) by fungal manganese peroxidise. Appl Microbiol Biotechnol 63:564–566

    CAS  Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Google Scholar 

  • Hammel KE, Tardone PJ (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27:6563–6568

    CAS  Google Scholar 

  • Harper DB (1985) Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315:55–57

    CAS  Google Scholar 

  • Haselmann KF, Laturnus F, Svensmark B, Grøn C (2000a) Formation of chloroform in spruce forest soil—results from laboratory incubation studies. Chemosphere 41:1769–1774

    CAS  Google Scholar 

  • Haselmann KF, Ketola RA, Laturnus F, Lauritsen FR, Grøn C (2000b) Occurrence and formation of chloroform at Danish forest sites. Atmos Environ 43:187–193

    Google Scholar 

  • Haselmann KF, Laturnus F, Grøn C (2002) Formation of chloroform in soil. A year-round study at a Danish spruce forest site. Water Air Soil Pollut 139:35–41

    CAS  Google Scholar 

  • Haveraaen O (1981) The effect of cutting on water quantity and water quality from an East-Norwegian coniferous forest. Rep Norw For Res Inst 36.7 (in Norwegian with an English summary)

  • Hewson WD, Hager LP (1979) Mechanism of the chlorination reaction catalyzed by horseradish peroxidase with chlorite. J Biol Chem 254:3175–3181

    CAS  Google Scholar 

  • Hjelm O, Johansson M-B, Öberg-Asplund G (1995) Organically bound halogens in coniferous forest soil—distribution pattern and evidence of in situ production. Chemosphere 30:2353–2364

    CAS  Google Scholar 

  • Hjelm O, Borén H, Öberg G (1996) Analysis of halogenated organic compounds in coniferous forest soil from a Lepista nuda (wood blewitt) fairy ring. Chemosphere 32:1719–1728

    CAS  Google Scholar 

  • Hoekstra EJ (2003) Review of concentrations and chemistry of trichloroacetate in the environment. Chemosphere 52:355–369

    CAS  Google Scholar 

  • Hoekstra EJ, Verhagen FJM, Field JA, de Leer EWB, Brinkman UAT (1998) Natural production of chloroform by fungi. Phytochemisty 49:91–98

    CAS  Google Scholar 

  • Hoekstra EJ, de Leer EWB, Brinkman UAT (1999a) Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 38:2875–2883

    CAS  Google Scholar 

  • Hoekstra EJ, de Weerd H, de Leer EWB, Brinkman UAT (1999b) Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ Sci Technol 33:2543–2549

    CAS  Google Scholar 

  • Hoekstra EJ, Duyzer JH, de Leer EWB, Brinkman UAT (2001) Chloroform—concentration gradients in soil air and atmospheric air, and emission fluxes from soil. Atmos Environ 35:61–70

    CAS  Google Scholar 

  • Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625

    CAS  Google Scholar 

  • Howard KWF, Haynes J (1993) Groundwater contamination due to road de-icing chemicals—salt balance implications. Geosci Can 20:1–8

    Google Scholar 

  • Hu J (2000) Effects of harvesting coniferous stands on site nutrients, acidity and hydrology. Ph.D. Thesis, Department of Forest Sciences, Agricultural University of Norway, Ås

  • Jaspers CJ, Ewbank G, McCarthy AJ, Penninckx MJ (2002) Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. J Appl Microbiol 92:127–133

    CAS  Google Scholar 

  • Johansson E, Krantz-Rülcker C, Zhang BX, Öberg G (2000) Chlorination and biodegradation of lignin. Soil Biol Biochem 32:1029–1032

    CAS  Google Scholar 

  • Johansson E, Ebenå G, Sandén P, Svensson T, Öberg G (2001) Organic and inorganic chlorine in Swedish spruce forest soil: influence of nitrogen. Geoderma 101:1–13

    CAS  Google Scholar 

  • Johansson E, Sandén P, Öberg G (2003a) Spatial patterns of organic chlorine and chloride in Swedish forest soil. Chemosphere 52:391–397

    CAS  Google Scholar 

  • Johansson E, Sandén P, Öberg G (2003b) Organic chlorine in deciduous and coniferous forest soils in southern Sweden. Soil Sci 168:347–355

    CAS  Google Scholar 

  • Kauffman SJ, Royer DL, Chang SB, Berner RA (2003) Export of chloride after clear-cutting in the Hubbard Brook sandbox experiment. Biogeochemistry 63:23–33

    CAS  Google Scholar 

  • Kavanagh F, Hervey A, Robbins WJ (1952) Antibiotic substances from basidiomycetes. IX. Drosophila subatrata (Batsch ex Fr.) Quél. Proc Natl Acad Sci U S A 38:555–560

    CAS  Google Scholar 

  • Keppler F, Biester H (2003) Peatlands: a major sink of naturally formed organic chlorine. Chemosphere 52:451–453

    CAS  Google Scholar 

  • Keppler F, Eiden R, Niedan V, Pracht J, Schöler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403:298–301

    CAS  Google Scholar 

  • Keppler F, Borchers R, Pracht J, Rheinberger S, Schöler HF (2002) Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36:2479–2483

    CAS  Google Scholar 

  • Kim E-J, Oh J-E, Chang Y-S (2003) Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci Total Environ 311:177–189

    CAS  Google Scholar 

  • Klages U, Lingens F (1979) Degradation of 4-chlorobenzoic acid by Nocardia species. FEMS Microbiol Lett 6:201–203

    CAS  Google Scholar 

  • Krauss M, Wilcke WE, Zech W (2000) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as a factor of different fate. Environ Pollut 110:79–88

    CAS  Google Scholar 

  • Lappin HM, Greaves MP, Slater JH (1985) Degradation of the herbicide mecoprop [2-(2-methyl-4chlorophenoxy)propionic acid] by a synergistic microbial community. Appl Environ Microbiol 49:429–433

    CAS  Google Scholar 

  • Laturnus F, Mehrtens G, Grøn C (1995) Haloperoxidase-like activity in spruce forest soil—a source of volatile halogenated organic compounds? Chemosphere 31:3709–3719

    CAS  Google Scholar 

  • Laturnus F, Lauritsen FR, Grøn C (2000) Chloroform in a pristine aquifer system: toward an evidence of biogenic origin. Water Resour Res 36:2999–3009

    CAS  Google Scholar 

  • Laturnus F, Haselmann KF, Borch T, Grøn C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl3)—an overview. Biogeochemistry 60:121–139

    CAS  Google Scholar 

  • Laturnus F, Fahimi I, Gryndler M, Hartmann A, Heal MR, Matucha M, Schöler HF, Schroll R, Svensson T (2005) Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil—challenges to understanding. Environ Sci Pollut Res 12:233–244

    CAS  Google Scholar 

  • Lead WA, Steinnes E, Bacon JR, Jones KC (1997) Polychlorinated biphenyls in UK and Norwegian soils: spatial and temporal trends. Sci Total Environ 193:229–236

    CAS  Google Scholar 

  • Lee RT, Shaw G, Wadey P, Wang X (2001) Specific association of 36Cl with low molecular weight humic substances in soils. Chemosphere 43:1063–1070

    CAS  Google Scholar 

  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    CAS  Google Scholar 

  • Levanon D (1993) Roles of fungi and bacteria in the mineralization of the pesticides atrazine, alachlor, malathion and carbofuran in soil. Soil Biol Biochem 25:1097–1105

    CAS  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47

    Google Scholar 

  • Louie TM, Mohn WW (1999) Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J Bacteriol 181:40–46

    CAS  Google Scholar 

  • Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature 256:193–194

    CAS  Google Scholar 

  • Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72:191–232

    CAS  Google Scholar 

  • Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548

    CAS  Google Scholar 

  • Matucha M, Gryndler M, Forczek ST, Uhlířová H, Fuksová K, Schröder P (2003a) Chloroacetic acids in environmental processes. Environ Chem Lett 1:127–130

    CAS  Google Scholar 

  • Matucha M, Forczek ST, Gryndler M, Uhlířová H, Fuksová K, Schröder P (2003b) Trichloroacetic acid in Norway spruce/soil-system. I. Biodegradation in soil. Chemosphere 50:303–309

    CAS  Google Scholar 

  • Matucha M, Gryndler M, Schröder P, Forczek ST, Uhlířová H, Fuksová K, Rohlenová J (2007) Chloroacetic acids—degradation intermediates of organic matter in forest soil. Soil Biol Biochem 39:382–385

    CAS  Google Scholar 

  • Maxe L (Ed) (1995) Effects of acidification on groundwater in Sweden. Report 4388, Swedish Environmental Protection Agency, Solna

  • McCulloch A (2002) Trichloroacetic acid in the environment. Chemosphere 47:667–686

    CAS  Google Scholar 

  • McCulloch A (2003) Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 50:1291–1308

    CAS  Google Scholar 

  • McRae B, LaPara TM, Hozalski RM (2004) Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere 55:915–925

    CAS  Google Scholar 

  • Meade T, D’Angelo EM (2005) [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Chemosphere 61:48–55

    CAS  Google Scholar 

  • Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672

    CAS  Google Scholar 

  • Milliken CE, Meier GP, Watts JEM, Sowers KR, May HD (2004) Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by Basidiomycete fungi. Appl Environ Microbiol 70:385–392

    CAS  Google Scholar 

  • Mohn WW (2004) Biodegradation and bioremediation of halogenated organic compounds. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, Heidelberg, pp 125–148

    Google Scholar 

  • Monde K, Satoh H, Nakamura M, Tamura M, Takasugi M (1998) Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs of Lilium maximowiczii. J Nat Prod 61:913–921

    CAS  Google Scholar 

  • Morrison M, Schonbaum GR (1976) Peroxidase-catalyzed halogenation. Annu Rev Biochem 45:861–888

    CAS  Google Scholar 

  • Müller G, Nkusi G, Schöler HF (1996) Natural organohalogens in sediments. J Prakt Chem/Chem Ztg 338:23–29

    Google Scholar 

  • Munir IZ, Dordick JS (2000) Soybean peroxidase as an effective bromination catalyst. Enzyme Microb Technol 26:337–341

    CAS  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotech 23:380–390

    CAS  Google Scholar 

  • Neilson AH (1994) Organic chemicals in the aquatic environment: distribution, persistence, and toxicity. CRC, Boca Raton, p 438

    Google Scholar 

  • Norrström A-C, Bergstedt E (2001) The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water Air Soil Pollut 127:281–299

    Google Scholar 

  • Öberg G (1998) Chloride and organic chlorine in soil. Acta Hydrochim Hydrobiol 26:137–144

    Google Scholar 

  • Öberg G (2002) The natural chlorine cycle—fitting the scattered pieces. Appl Microbiol Biotechnol 58:565–581

    Google Scholar 

  • Öberg G, Grøn C (1998) Sources of organic halogens in spruce forest soil. Environ Sci Technol 32:1573–1579

    Google Scholar 

  • Öberg G, Nordlund E, Berg B (1996) In situ formation of organically bound halogens during decomposition of Norway spruce litter—effects of fertilization. Can J For Res 26:1040–1048

    Google Scholar 

  • Öberg G, Brunberg H, Hjelm O (1997) Production of organically bound halogens during degradation of birch wood by common white-rot fungi. Soil Biol Biochem 29:191–197

    Google Scholar 

  • Öberg G, Johansen C, Grøn C (1998) Organic halogens in spruce forest throughfall. Chemosphere 36:1689–1701

    Google Scholar 

  • Öberg G, Holm M, Sandén P, Svensson T, Parikka M (2005) The role of organic-matter-bound chlorine in the chlorine cycle: a case study of the Stubbetorp catchment, Sweden. Biogeochemistry 75:241–269

    Google Scholar 

  • Osborne RL, Raner GM, Hager LP, Dawson JH (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037

    CAS  Google Scholar 

  • Paasivirta J, Tenhola H, Palm H, Lammi R (1992) Free and bound chlorophenols in kraft pulp bleaching effluents. Chemosphere 24:1253–1258

    CAS  Google Scholar 

  • Paasivirta J, Palm H, Rantio T, Koistinen J, Maatela P, Lammi R (1998) Environmental fate of originated organo chlorine compounds from paper mills. In: Turoski V (ed) Chlorine and chlorine compounds in the paper industry. CRC, Boca Raton, FL, pp 109–117

    Google Scholar 

  • Persson Y, Lundstedt S, Öberg L, Tysklind M (2007) Levels of chlorinated compounds (CPs, PCPPs, PCDEs, PCDFs and PCDDs) in soils at contaminated sawmill sites in Sweden. Chemosphere 66:234–242

    CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  Google Scholar 

  • Ramakrishna DM, Viraraghavan T (2005) Environmental impact of chemical deicers—a review. Water Air Soil Pollut 166:49–63

    CAS  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    CAS  Google Scholar 

  • Rodstedth M, Ståhlberg C, Sandén P, Öberg G (2003) Chloride imbalances in soil lysimeters. Chemosphere 52:381–389

    CAS  Google Scholar 

  • Romanič SH, Krauthacker B (2006) Distribution of persistent organochlorine compounds in one-year and two-year-old pine needles. Bull Environ Contam Toxicol 77:143–148

    Google Scholar 

  • Schöler HF, Keppler F (2003) Abiotic formation of organohalogens in the terrestrial environment. Chimia 57:33–34

    Google Scholar 

  • Schöler HF, Keppler F, Fahimi IJ, Niedan VW (2003) Fluxes of trichloroacetic acid between atmosphere, biota, soil, and groundwater. Chemosphere 52:339–354

    Google Scholar 

  • Schöler HF, Nkusi G, Niedan VW, Müller G, Spitthoff B (2005) Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites. Chemosphere 60:1505–1512

    Google Scholar 

  • Schröder P, Matucha M, Forczek ST, Uhlířová H, Fuksová K, Albrechtová J (2003) Uptake, translocation and fate of trichloroacetic acid in Norway spruce/soil system. Chemosphere 52:437–442

    Google Scholar 

  • Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381

    CAS  Google Scholar 

  • Scow KM, Hutson J (1992) Effect of diffusion and sorption on the kinetics of biodegradation: theoretical considerations. Soil Sci Soc Am J 56:119–127

    CAS  Google Scholar 

  • Silk PJ, Lonergan GC, Arsenault TL, Boyle CD (1997) Evidence of natural organochlorine formation in peat bogs. Chemosphere 35:2865–2880

    CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    CAS  Google Scholar 

  • Spain JC, Van Veld PA (1983) Adaption of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol 45:428–435

    CAS  Google Scholar 

  • Stupak I, Asikainen A, Jonsell M, Karltun E, Lunnan A, Mizaraite D, Pasanen K, Pärn H, Raulund-Rasmussen K, Röser D, Schröder M, Varnagiryte I, Vilkriste L, Callesen I, Clarke N, Gaitnieks T, Ingerslev M, Mandre M, Ozolincius R, Saarsalmi A, Armolaitis K, Helmisaari H-S, Indriksons A, Kairiukstis L, Katzensteiner K, Kukkola M, Ots K, Ravn HP, Tamminen P (2007) Sustainable utilisation of forest biomass for energy—possibilities and problems, policy, legislation, certification and recommendations. Biomass Bioenergy 31:666–684

    Google Scholar 

  • Svensson T, Sandén P, Bastviken D, Öberg G (2007) Chlorine transport in a small catchment in southeast Sweden during two years. Biogeochemistry 82:181–199

    Google Scholar 

  • Trofast J, Wickberg B (1977) Mycorrhizin A and chloromycorrhizin A, two antibiotics from a mycorrhizal fungus of Monotropa hypopytis L. Tetrahedron 33:875–879

    CAS  Google Scholar 

  • UN-ECE (2006) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Available at http://www.icp-forests.org/Manual.htm

  • van de Pas BA, Jansen S, Dijkema C, Schraa G, de Vos WM, Stams AJM (2001) Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl Environ Microbiol 67:3958–3963

    Google Scholar 

  • van Hees PAW, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem 34:1261–1272

    Google Scholar 

  • van Pée K-H, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312

    Google Scholar 

  • Vela S, Häggblom MM, Young LY (2002) Biodegradation of aromatic and aliphatic compounds by rhizobial species. Soil Sci 167:802–810

    CAS  Google Scholar 

  • Verhagen FJM, Swarts HJ, Wijnberg JBPA, Field JA (1998a) Organohalogen production is a ubiquitous capacity among Basidiomycetes. Chemosphere 37:2091–2104

    CAS  Google Scholar 

  • Verhagen FJM, Swarts HJ, Wijnberg JBPA, Field JA (1998b) Biotransformation of the major fungal metabolite 3,5-dichloro-p-anisyl alcohol under anaerobic conditions and its role in formation of bis(3,5-dichloro-4-hydroxyphenyl)methane. Appl Environ Microbiol 64:3225–3231

    CAS  Google Scholar 

  • Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016

    CAS  Google Scholar 

  • Wigilius B, Allard B, Borén H, Grimvall A (1988) Determination of adsorbable organic halogens (AOX) and their molecular weight distribution in surface water samples. Chemosphere 17:1985–1994

    CAS  Google Scholar 

  • Winterton N (2000) Chlorine: the only green element—towards a wider acceptance of its role in natural cycles. Green Chem 2:173–225

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Czech–German Future Fund, Helmholtz Zentrum München, the Ministry of Agriculture of the Czech Republic (project 0002070201) and the Research Council of Norway for funding the international workshop ‘Biogeochemical cycles: chlorine in forest ecosystems’ (Garmisch-Partenkirchen, 2–4 November 2006) and the Programme Coordinating Centre, National Focal Centres and participating institutions of ICP Forests for providing data on chloride in deposition. We further appreciate the research concepts AVOZ 50380511 (Institute of Experimental Botany, ASCR, v.v.i., Prague) and AV0Z50200510 (Institute of Microbiology, ASCR, v.v.i., Prague) and the Grant Agency of the Czech Republic for supporting research connected with the topic of this article. We also thank three anonymous referees for the constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, N., Fuksová, K., Gryndler, M. et al. The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environ Sci Pollut Res 16, 127–143 (2009). https://doi.org/10.1007/s11356-008-0090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-008-0090-4

Keywords

Navigation