Skip to main content
Log in

Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tetracyclines are frequently detected in water bodies due to their widespread use in aquaculture and animal husbandry. A hydroponic experiment was conducted to explore the phytotoxic effects of Vallisneria natans (Lour.) Hare exposed to various concentrations of chlortetracycline (CTC) and oxytetracycline (OTC) (0, 0.1, 1, 10, 30, 50, and 100 mg/L) for 7 days (7 D) and 14 days (14 D), respectively. The results showed that similar to OTC treatment for 7 D, the relative growth rates (RGR) and catalase (CAT) activity of V. natans, after 7 D of CTC exposure, decreased significantly at 10 mg/L and 30 mg/L, respectively. The content of soluble protein notably decreased when CTC ≥ 10 mg/L and OTC ≥ 30 mg/L. The hydrogen peroxide (H2O2) content was significantly stimulated when OTC ≥ 10 mg/L, while it hardly changed when exposed to CTC. After 14 D, the malondialdehyde (MDA) and H2O2 contents of V. natans were significantly higher than those of the control group under a high concentration of OTC (≥ 30 mg/L), but they did not change significantly under a high concentration of CTC. The activity of polyphenol oxidase (PPO), under CTC treatment after 14 D, showed first a significant increase then decreases; the maximum value (125% of the control) was noticed at 10 mg/L CTC, while it remained unchanged when exposed to OTC. The soluble protein content significantly decreased at 10 mg/L CTC and 0.1 mg/L OTC, respectively. The RGR, CAT, and peroxidase (POD) activities, similar to OTC treatment after 14 D, decreased evidently when CTC was 10 mg/L, 30 mg/L, and 0.1 mg/L, respectively. CTC and OTC harm the chlorophyll content of V. natans after 14 D, and the reductions of chlorophyll a and carotenoid were more pronounced than chlorophyll b. The results suggest that CTC and OTC both have a negative effect on the growth of V. natans, and OTC can cause oxidative damage in V. natans but CTC harms the metabolism process without inducing oxidative damage. Overall, the toxicity of OTC to V. natans is stronger than that of CTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Funding

The National Science Foundation of China (No. 31270410, No. 30970303)

The Scientific Research Project of Hubei Province Environmental Protection Department (2014HB07)

Author information

Authors and Affiliations

Authors

Contributions

Jing Li: conceptualization, methodology, resources, investigation, writing-original draft

Lu Yang: resources, validation

Zhonghua Wu: Supervision, project administration, funding acquisition

Corresponding author

Correspondence to Zhonghua Wu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

No applicable.

Consent for publication

Written informed consent for publication was obtained from all participants.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, L. & Wu, Z. Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare. Environ Sci Pollut Res 28, 62549–62561 (2021). https://doi.org/10.1007/s11356-021-14922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14922-2

Keywords

Navigation