Skip to main content

Advertisement

Log in

Biosolid-borne tetracyclines and sulfonamides in plants

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tetracyclines and sulfonamides used in human and animal medicine are released to terrestrial ecosystems from wastewater treatment plants or by direct manure application. The interactions between plants and these antibiotics are numerous and complex, including uptake and accumulation, phytometabolism, toxicity responses, and degradation in the rhizosphere. Uptake and accumulation of antibiotics have been studied in plants such as wheat, maize, potato, vegetables, and ornamentals. Once accumulated in plant tissue, organic contaminants can be metabolized through a sequential process of transformation, conjugation through glycosylation and glutathione pathways, and ultimately sequestration into plant tissue. While studies have yet to fully elucidate the phytometabolism of tetracyclines and sulfonamides, an in-depth review of plant and mammalian studies suggest multiple potential transformation and conjugation pathways for tetracyclines and sulfonamides. The presence of contaminants in the vicinity or within the plants can elicit stress responses and defense mechanisms that can help tolerate the negative effects of contaminants. Antibiotics can change microbial communities and enzyme activity in the rhizosphere, potentially inducing microbial antibiotic resistance. On the other hand, the interaction of microbes and root exudates on pharmaceuticals in the rhizosphere can result in degradation of the parent molecule to less toxic compounds. To fully characterize the environmental impacts of increased antibiotic use in human medicine and animal production, further research is essential to understand the effects of different antibiotics on plant physiology and productivity, uptake, translocation, and phytometabolism of antibiotics, and the role of antibiotics in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265

    Article  CAS  Google Scholar 

  • Alcorn SM, Ark PA (1956) Movement of certain antibiotics in the cuttings of Pyrcantha and carnation. Appl Environ Microbiol 4:126–130

    CAS  Google Scholar 

  • Andrews CJ, Skipsey M, Townson JK, Morris C, Jepson I, Edwards R (1997) Glutathione transferase activities toward herbicides used selectively in soybean. Pestic Sci 51:213–222

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Benitz KF, Diermeier HF (1964) Renal toxicity of tetracycline degradation products. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 115: 930–935

  • Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Human and Ecological Risk Assessment 8:1003–1034

    Article  Google Scholar 

  • Bowman SM, Drzewiecki KE, Mojica E-RE, Zielinski AM, Siegel A, Aga DS, Berry J (2011) Toxicity and reductions in intracellular calcium levels following uptake of a tetracycline antibiotic in Arabidopsis. Environ Sci Technol 8958–8964

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297

    Article  CAS  Google Scholar 

  • Bradel BG, Preil W, Jeske H (2000) Remission of the free-branching pattern of Euphorbia pulcherrima by tetracycline treatment (Abnahme des Verzweigungsgrades von Euphorbia pulcherrima durch Tetracyclin-Behandlung). J Phytopathol 148:587–590

    Article  CAS  Google Scholar 

  • Brandt KK, Sjøholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43:2963–2968

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds: green liver model. In 'Phytoremediation: Transformation and Control of Contaminants'. (Eds SC McCutcheon, JL Schnoor) pp. 59–84. (Wiley)

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y-F, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108

    Google Scholar 

  • Chiou CT, Sheng G, Manes M (2001) A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35:1437–1444

    Article  CAS  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA, Davies TGE (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Conte SS, Lloyd AM (2010) The MAR1 transporter is an opportunistic entry point for antibiotics. Plant Signaling & Behavior 5:49–52

    Article  CAS  Google Scholar 

  • Day JA, Saunders FM (2004) Glycosidation of chlorophenols by Lemna minor. Environ Toxicol Chem 23:613–620

    Article  CAS  Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  CAS  Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

    CAS  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    Article  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    Article  CAS  Google Scholar 

  • Dowd JE, Riggs DS (1965) A comparison of estimates of Michaelis–Menten kinetic constants from various linear transformations. J Biol Chem 240:863–869

    CAS  Google Scholar 

  • Farkas M, Berry JO, Aga DS (2007a) Determination of enzyme kinetics and glutathione conjugates of chlortetracycline and chloroacetanilides using liquid chromatography-mass spectrometry. Analyst 132:664–671

    Article  CAS  Google Scholar 

  • Farkas MH, Berry JO, Aga DS (2007b) Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol 41:1450–1456

    Article  CAS  Google Scholar 

  • Farkas MH, Mojica E-RE, Patel M, Aga DS, Berry JO (2009) Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants. Analyst 134:1594–1600

    Article  CAS  Google Scholar 

  • Fedoroff NV (2002) Cross-talk in abscisic acid signaling. Sci. STKE 2002: re10-

  • Garcia-Galan MJ, Diaz-Cruz MS, Barcelo D (2008) Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trac-Trends in Analytical Chemistry 27:1008–1022

    Article  CAS  Google Scholar 

  • Gollan T, Schurr U, Schulze ED (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ 15:551–559

    Article  CAS  Google Scholar 

  • Golovchenko VV, Ovodova RG, Shashkov AS, Ovodov YS (2002) Structural studies of the pectic polysaccharide from duckweed Lemna minor L. Phytochemistry 60:89–97

    Article  CAS  Google Scholar 

  • Goodman RN (1962) The impact of antibiotics upon plant disease control. Adv Pest Control Res 5:1–46

    CAS  Google Scholar 

  • Gujarathi NP, Haney BJ, Park HJ, Wickramasinghe SR, Linden JC (2005) Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnol Prog 21:775–780

    Article  CAS  Google Scholar 

  • Gujarathi NP, Linden JC (2005) Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures. Biotechnol Bioeng 92:393–402

    Article  CAS  Google Scholar 

  • Hammesfahr U, Kotzerke A, Lamshöft M, Wilke B-M, Kandeler E, Thiele-Bruhn S (2011) Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. Eur J Soil Biol 47:61–68

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  • Hart DA, Kindel PK (1970) Isolation and partial characterization of apiogalacturonans from the cell wall of Lemna minor. Biochem J 116:569–579

    CAS  Google Scholar 

  • Hoenke S, Schmid M, Dimroth P (1997) Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur J Biochem 246:530–538

    Article  CAS  Google Scholar 

  • Höltge S, Kreuzig R (2007) Laboratory testing of sulfamethoxazole and its metabolite acetyl-sulfamethoxazole in soil. CLEAN – Soil, Air, Water 35:104–110

  • Hou J, Pan B, Niu X, Chen J, Xing B (2010) Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A. Environ Pollut 158:2826–2832

    Google Scholar 

  • Hu X, Zhou Q, Luo Y (2011) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998

    Article  Google Scholar 

  • Iammarino M, Palermo C, Nardiello D, Muscarella M (2011) Optimization and validation of a confirmatory method for determination of ten sulfonamides in feeds by LC and UV-Diode Array Detection. Chromatographia 73:75–82

    Article  CAS  Google Scholar 

  • Jackson CK, Hall JL (1993) A fine structural analysis of auxin-induced elongation of cucumber hypocotyls, and the effects of calcium antagonists and ionophores. Ann Bot 72:193–204

    Article  CAS  Google Scholar 

  • Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y (2004) Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Res 32:5732–5741

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok Y (2011) Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water, Air, and Soil Pollution 214:163–174

    Article  CAS  Google Scholar 

  • Komossa D, Langebartels C, Sandermann H Jr (1995) Metabolic processes for organic chemicals in plants. In: Trapp S, McFarlane JC (eds) Plant contamination. Lewis, Boca Raton, FL, pp 69–103

    Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147:187–193

    Article  CAS  Google Scholar 

  • Kreuz K, Tommasini R, Martnoia E (1996) Old enzymes for a new job. Plant Physiol 111:349–353

    CAS  Google Scholar 

  • Kummerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75

    Article  Google Scholar 

  • Lee S-H, Lee W-S, Lee C-H, Kim J-G (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  CAS  Google Scholar 

  • Lertpaitoonpan W, Ong SK, Moorman TB (2009) Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76:558–564

    Article  CAS  Google Scholar 

  • Li R-Y, Ago Y, Liu W-J, Mitani N, Jr F, McGrath SP, Ma JF, Zhao F-J (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Li Y-W, Wu X-L, Mo C-H, Tai Y-P, Huang X-P, Xiang L (2011a) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China. J Agric Food Chem 59:7268–7276

    Article  Google Scholar 

  • Li Z-J, Xie X-Y, Zhang S-Q, Liang Y-C (2011b) Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant. Pedosphere 21:244–250

    Article  CAS  Google Scholar 

  • Liang Y, Si J, Römheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797–804

    Article  CAS  Google Scholar 

  • Lin C-H, Goyne KW, Kremer RJ, Lerch RN, Garrett HE (2010) Dissipation of sulfamethazine and tetracycline in the root zone of grass and tree species. J Environ Qual 39:1269–1278

    Article  CAS  Google Scholar 

  • Liu F, Wu J, Ying G-G, Luo Z, Feng H (2011) Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Applied Microbiology and Biotechnology: 1–9

  • Liu F, Ying G-G, Tao R, Zhao J-L, Yang J-F, Zhao L-F (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642

    Article  CAS  Google Scholar 

  • Marger MD, Saier MH Jr (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences 18:13–20

    Article  CAS  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annual Review of Plant Physiology and Plant Molecular Biology 48:399–429

    Article  CAS  Google Scholar 

  • McCoy RE (1975) Uptake, translocation and persistence of oxytetracycline in coconut palm. Disease control and pest management 66:1038–1042

    Google Scholar 

  • McCoy RE (1982) Use of tetracycline antibiotics to control yellows diseases. Plant Dis 66:539–542

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley-Interscience, Hoboken, NJ, pp 3–58

    Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  Google Scholar 

  • Miao X-S, Yang J-J, Metcalfe CD (2005) Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ Sci Technol 39:7469–7475

    Article  CAS  Google Scholar 

  • Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agric Ecosyst Environ 60:121–128

    Article  CAS  Google Scholar 

  • Migliore L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, Gaudio L (1997) Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Agric Ecosyst Environ 65:163–168

    Article  CAS  Google Scholar 

  • Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37:2957–2961

    Article  CAS  Google Scholar 

  • Møller I, Kay C, Palmer J (1986) Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria. Biochem J 237:765–771

    Google Scholar 

  • Muller A, Guan C et al (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

    Article  CAS  Google Scholar 

  • Nagao A, Usui K, Shim IS (1998) Comparison of the induction of glutathione s-transferase in plants by treatment with substrates journal of weed. Science and Technology 340–348(42):340–348

    Google Scholar 

  • Netting AG (2000) pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implication for plant water relations. J Exp Bot 51:147–158

    Article  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  CAS  Google Scholar 

  • Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37:1393–1399

    Article  CAS  Google Scholar 

  • Pflugmacher S, Sandermann H Jr (1998) Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochemistry 49:507–511

    Article  CAS  Google Scholar 

  • Pflugmacher S, Schröder P, Sandermann H (2000) Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54:267–273

    Article  CAS  Google Scholar 

  • Piotrowicz-Cieslak AI, Adomas B, Nałęcz-Jawecki G, Michalczyk DJ (2011) Phytotoxicity of sulfamethazine soil pollutant to six legume plant species. J Toxicol Environ Heal 73:1220–1229, Part A: Current Issues

    Article  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67:387–396

    Article  CAS  Google Scholar 

  • Pompeo F, Brooke E, Kawamura A, Mushtaq A, Sim E (2002) The pharmacogenetics of NAT: structural aspects. Pharmacogenomics 3:19–30

    Article  CAS  Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    CAS  Google Scholar 

  • Qiang Z, Adams C (2004) Potentiometric determination of acid dissociation constants (pK a) for human and veterinary antibiotics. Water Res 38:2874–2890

    Article  CAS  Google Scholar 

  • Rang HP, Dale MM (1991) ‘Pharmacology.’ (Churchill Livingstone)

  • Renner, Rebecca (2002) ‘Do cattle growth hormones pose an environmental risk ?’ (American Chemical Society: Washington, DC, ETATS-UNIS)

  • Roberts RM, Shah RH, Loewus F (1967) Inositol metabolism in plants, IV. Biosynthesis of apiose in Lemna and Pertroselinum. Plant Physiol 42:659–666

    Article  CAS  Google Scholar 

  • Rodrigues-Lima F, Dairou J, Diaz CL, Rubio MC, Sim E, Spaink HP, Dupret JM (2006) Cloning, functional expression and characterization of Mesorhizobium loti arylamine N-acetyltransferases: rhizobial symbiosis supplies leguminous plants with the xenobiotic N-acetylation pathway. Mol Microbiol 60:505–512

    Article  CAS  Google Scholar 

  • Rogers HR (1996) Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci Total Environ 185:3–26

    Article  CAS  Google Scholar 

  • Sandermann H (1992) Plant-metabolism of xenobiotics. Trends in Biochemical Sciences 17:82–84

    Article  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the 'green liver' concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Sandermann H (2004) Molecular ecotoxicology of plants. Trends Plant Sci 9:406–413

    Article  CAS  Google Scholar 

  • Sanders SM, Srivastava P, Feng Y, Dane JH, Basile J, Barnett MO (2008) Sorption of the veterinary antimicrobials sulfadimethoxine and ormetoprim in soil. J Environ Qual 37:1510–1518

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Schäffner A, Messner B, Langebartels C, Sandermann H (2002) Genes and enzymes for in-planta phytoremediation of air, water and soil. Acta Biotechnol 22:141–151

    Article  Google Scholar 

  • Schauss K, Focks A et al (2009) Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC Trends in Analytical Chemistry 28:612–618

    Article  CAS  Google Scholar 

  • Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 165:359–369

    Article  CAS  Google Scholar 

  • Schroder P, Collins C (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. International Journal of Phytoremediation 4:247–265

    Article  Google Scholar 

  • Schröder P, Scheer C, Diekmann F, Stampfl A (2007) How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare) (9 pp). Environ Sci Pollut Res 14:114–122

    Article  Google Scholar 

  • Schuphan I, Westphal D, Haque A, Ebing W (1981) biological and chemical behavior of perhalogenmethylmercapto fungicides: metabolism and in vitro reactions of dichlofluanid in comparison with captan. In 'Sulfur in Pesticide Action and Metabolism' pp. 85–96. (AMERICAN CHEMICAL SOCIETY)

  • Sczesny S, Nau H, Hamscher G (2003) Residue analysis of tetracyclines and their metabolites in eggs and in the environment by HPLC Coupled with a microbiological assay and tandem mass spectrometry. J Agric Food Chem 51:697–703

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    Article  CAS  Google Scholar 

  • Tavares MFM, McGuffin VL (1994) Separation and characterization of tetracycline antibiotics by capillary electrophoresis. Journal of Chromatography A 686:129–142

    Article  CAS  Google Scholar 

  • Trzcinski K, Cooper BS, Hryniewicz W, Dowson CG (2000) Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 45:763–770

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Google Scholar 

  • UCS (2001) Hogging it!: Estimates of antimicrobial abuse in livestock

  • Werner JJ, Chintapalli M, Lundeen RA, Wammer KH, Arnold WA, McNeill K (2007) Environmental photochemistry of tylosin: efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. J Agric Food Chem 55:7062–7068

    Article  CAS  Google Scholar 

  • Whitacre DM, Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. rev environ contam toxicol 202:53–154

    Article  Google Scholar 

  • Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    Article  CAS  Google Scholar 

  • Xie X, Zhou Q, Lin D, Guo J, Bao Y (2011) Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum). Environ Sci Pollut Res 18:566–575

    Article  CAS  Google Scholar 

  • Yang Q, Zhang J, Zhang W, Wang Z, Xie Y, Zhang H (2010) Influence of tetracycline exposure on the growth of wheat seedlings and the rhizosphere microbial community structure in hydroponic culture. J Environ Sci Health Part B 45:190–197

    Article  CAS  Google Scholar 

  • Zhang DQ, Tan SK, Gersberg RM, Sadreddini S, Zhu J, Tuan NA (2011) Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol Eng 37:460–464

    Article  Google Scholar 

  • Zurhelle G, Petz M, Mueller-Seitz E, Siewert E (2000) Metabolites of oxytetracycline, tetracycline, and chlortetracycline and their distribution in egg white, egg yolk, and hen plasma. J Agric Food Chem 48:6392–6396

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiny Mathews.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathews, S., Reinhold, D. Biosolid-borne tetracyclines and sulfonamides in plants. Environ Sci Pollut Res 20, 4327–4338 (2013). https://doi.org/10.1007/s11356-013-1693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1693-y

Keywords

Navigation