Skip to main content
Log in

Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

More attention has been paid to tetracycline contamination in view of its rapid increasing concentration in the environment. Therefore, it is important to set up rapid, simple, and accurate methods for monitoring tetracycline ecotoxicity.

Methods

In the present study, a hydroponics experiment was conducted to examine toxic effects of tetracycline at the concentration range of 0.5 to 300 mg L−1 on growth, antioxidative, and genetic indices of wheat (Triticum aestivum L.).

Results

The results indicated that tetracycline at 0.5–10 mg L−1 could stimulate seed germination, cell mitotic division, and growth of wheat seedlings and did not induce a significant increase in the activity of antioxidative enzymes. However, tetracycline at the high concentrations (10–300 mg L−1) could significantly inhibit these parameters in the concentration-dependent manner, including germination percentage (≥100 mg L−1), shoot height (≥100 mg L−1), root length (≥50 mg L−1), and mitotic index (≥50 mg L−1), and increased the activity of antioxidative enzymes (≥25 mg L−1) in the dose-dependent manner, including superoxide dismutase, catalase, and peroxidase. Tetracycline at 5 mg L−1 and above significantly augmented chromosome aberration frequency and malondialdehyde (MDA) content. On the other hand, MDA has positive correlation with the inhibition rates of seed germination, root length, shoot length, mitotic index, and antioxidative enzyme activities.

Conclusion

Tetracycline may have potential physiological, biochemical, and genetic toxicity to plant cells, and chromosome aberration and MDA might be sensitive bioindicators for tetracycline contamination than the other plant characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut 142:295–302

    Article  CAS  Google Scholar 

  • Blackwell PA, Kay P, Ashauer R, Boxall AB (2009) Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere 75(1):13–19. doi:10.1016/j.chemosphere.2008.11.070

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Cheng G (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39:2660–2667

    Article  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • Dawes IW (2000) Response of eukaryotic cells to oxidative stress. Agric Biol Chem 43:211–217

    CAS  Google Scholar 

  • Ding HD, Wan YH, Qi NM, Zhu WM, Yang XF, Shao YC (2004) Effects of Cd2+ and Zn2+ stress on antioxidant enzyme system of tomato seedlings. Acta Agr Shanghai 20:79–82 (in Chinese)

    Google Scholar 

  • Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57(11):1733–1738

    Article  CAS  Google Scholar 

  • El-Ghamery AA, El-Kholy MA, Abou El-Yousser MA (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res 537:29–41

    CAS  Google Scholar 

  • Ferrari B, Mons R, Vollat B, Fraysse B, Paxéus N, Lo Giudice R, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23(5):1344–1354

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG, Molina SMG, Smith RJ, Lea PJ, Azevedo RA (2002) Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell Tissue Organ Cult 71:125–131

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Giannoplitis CN, Ries SK (1977) Superoxide dismutase purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318

    Article  Google Scholar 

  • Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74(7):1509–1518

    Article  CAS  Google Scholar 

  • Hegedüs A, Erdei S, Horvàth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under Cd stress. Plant Sci 160:1085–1093

    Article  Google Scholar 

  • Jiao S, Zheng S, Yin D, Wang L, Chen L (2008) Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere 73(3):377–382

    Article  CAS  Google Scholar 

  • Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 1918:1–12

    Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147:187–193

    Article  CAS  Google Scholar 

  • Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96:577–583

    Article  CAS  Google Scholar 

  • Li LJ, Liu XM, Guo YP, Ma EB (2005) Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environ Toxicol Pharmacol 20:412–416

    Article  CAS  Google Scholar 

  • Li GK, Yun Y, Li HY, Sang N (2008) Effect of landfill leachate on cell cycle, micronucleus, and sister chromatid exchange in Triticum aestivum. J Hazard Mater 155:10–16

    Article  CAS  Google Scholar 

  • Liu DY, Wang YB, Zhang XX, Si Q (2002) Effect of sewage irrigation on wheat growth and its activated oxygen metabolism. J Appl Ecol 13:1319–1322 (in Chinese)

    Google Scholar 

  • Liu P, Ding YF, QI G, Chang YX, Li MJ (2004) Physiological and biochemical effects of medical antibiotics on plants. J Henan Normal Univ (Nat Sci) 32(2):66–70 (in Chinese)

    Google Scholar 

  • Ma TH (1999) The international program on plant bioassays and the report of the follow-up study after the hands-on workshop in China. Mutat Res 426:103–106

    CAS  Google Scholar 

  • Michael HF, James OB, Diana SA (2007) Chortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol 41:1450–1456

    Article  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52(7):1233–1244

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Peixoto F, Alves-Fernandes D, Santos D, Fontánhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pestic Biochem Physiol 85:91–96

    Article  CAS  Google Scholar 

  • Polle A, Eiblemeier M, Sheppard L, Murray M (1997) Responses of antioxidative enzymes to evelated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environ 20:1317–1321

    Article  CAS  Google Scholar 

  • Rasheed P, Mukerji S (1991) Changes in catalase and ascorbic acid oxidase activities in response to lead nitrate treatments in mungbean. Indian J Plant Physiol 34:143–146

    Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengal-gram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Song NH, Yang ZM, Zhou LX, Wu X, Yang H (2006) Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestium. J Environ Sci 17:101–108

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metal on enzyme activity in plant. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Wang ME, Zhou QX (2006) Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotoxicol Environ Saf 64:190–197

    Article  CAS  Google Scholar 

  • Wilson CJ, Brain RA, Sanderson H, Johnson DJ, Bestari KT, Sibley PK, Solomon KR (2004) Structural and functional responses of plankton to a mixture of four tetracyclines in aquatic microcosms. Environ Sci Technol 38:6430–6439

    Article  CAS  Google Scholar 

  • Wu XY, von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum ulgare L.) exposed to ozone. Environ Pollut 116:37–47

    Article  CAS  Google Scholar 

  • Yi HL, Si LY (2007) Vicia root-mirconucleus and sister chromatid exchange assays on the genotoxicity of selenium compounds. Mutat Res 630:92–96

    CAS  Google Scholar 

  • Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    Article  CAS  Google Scholar 

  • Zhang HY, Jiang YN, He ZY, Ma M (2005a) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  Google Scholar 

  • Zhang SQ, Zhang FD, Liu XM, Wang YJ, Zou SW, He XS (2005b) Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots. Plant Nutr Fert Sci 11(6):822–829 (in Chinese)

    Google Scholar 

  • Zhang H, Luo Y, Zhou QX (2008) Research advancement of eco-toxicity of chlortetracycline antibiotics. J Agro Environ Sci 27:407–413 (in Chinese)

    CAS  Google Scholar 

  • Zhang SS, Zhang HM, Qin R, Jiang WS, Liu DH (2009) Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18(7):814–823

    Article  CAS  Google Scholar 

  • Zhou QX, Zhang QR, Sun TH (2006) Technical innovation of land treatment systems for municipal wastewater in northeast China. Pedosphere 16:297–303

    Article  CAS  Google Scholar 

  • Zhou QX, Wang ME, Liang JD (2008) Ecological detoxification of methamidophos by earthworms in phaeozem co-contaminated with acetochlor and copper. Appl Soil Ecol 40:138–145

    Article  Google Scholar 

Download references

Acknowledgments

The authors heartily thank the National Natural Science Foundation of China for its financial support as general projects (Grant Nos. 20977053, and 20777040) and as a key project (Grant No. 21037002). This work was also supported by the Ministry of Education, People’s Republic of China as a grand fostering project (Grant No. 707011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixing Zhou.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Zhou, Q., Lin, D. et al. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environ Sci Pollut Res 18, 566–575 (2011). https://doi.org/10.1007/s11356-010-0398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0398-8

Keywords

Navigation