Skip to main content
Log in

Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aquatic plants play an important role in maintaining the health of water environment in nature. Studies have shown that linear alkylbenzene sulfonate (LAS), a type of omnipresent pollutant, can cause toxic damage to aquatic plants. In the present research, we studied the physiological and growth response of submerged plant Potamogeton perfoliatus L. to different concentrations of LAS (0.1, 1.0, 10.0, 20.0, and 50.0 mg l−1). The results showed that LAS is toxic to P. perfoliatus, and the toxicity is dose-dependent. Only slightly reversible oxidative damages were observed in the physiological parameters of P. perfoliatus when P. perfoliatus was exposed to lower LAS doses (< 10 mg l−1): soluble sugar, soluble protein, H2O2, and malondialdehyde (MDA) content in P. perfoliatus increased significantly at 0.1 mg l−1 and then returned to normal levels at 1.0 mg l−1. Antioxidant enzymes were activated before the LAS concentration reached 10 mg l−1, and the activities of superoxide dismutase (SOD), catalase (CAT), and photosynthesis pigment content declined significantly when the concentration of LAS exceeded 10 mg l−1. In addition, at higher concentrations (20–50 mg l−1) of LAS, dry weight and fresh weight of P. perfoliatus showed significant declines. The results indicate that LAS above 10 mg l−1 can cause serious physiological and growth damage to P. perfoliatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plantarum 100:224–233

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (2003) Superoxide dismutase and stress tolerance. Annu Rev Plant Phys 43:83–116

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brogan WR 3rd, Relyea RA (2014) A new mechanism of macrophyte mitigation: how submerged plants reduce malathion’s acute toxicity to aquatic animals. Chemosphere 108:405–410

    Article  CAS  Google Scholar 

  • Cunningham JJ, Kemp WM, Lewis MR, Stevenson JC (1984) Temporal responses of the macrophyte, Potamogeton perfoliatus L., and its associated autotrophic community to atrazine exposure in estuarine microcosms. Estuaries 7:519–530

    Article  Google Scholar 

  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. In: Sunkar R (eds) Plant stress tolerance. Methods in Molecular Biology (Methods and Protocols), vol 639 Humana Press

  • Farhadian O, Kharamannia R, Soofiani NM, Dorche EE (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72(2):596

    Article  Google Scholar 

  • Forgács E, Oros G, Cserháti T (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28(5):337–348

    Article  Google Scholar 

  • Garrido-Perez MC, Perales-Vargasmachuca JA, Nebot-Sanz E, Sales-Márquez D (2008) Effect of the test media and toxicity of LAS on the growth of Isochrysis galbana. Ecotoxicology 17(8):738–746

    Article  CAS  Google Scholar 

  • Guo YH, Sun XZ, Wang HQ (1985) Studies on the classification of Potamogeton in Shaanxi Province. Acta Botanica Boreali-Occident 4:291–304

    Google Scholar 

  • Guo W, Gong X, Deng X, Wang Z, Li Z (2016) Community succession of macrophytes in the middle and lower reaches of the Hanjiang River. Chin Bull Bot 51(6):782–789

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347(5406):357–359

    Google Scholar 

  • Hodges G, Roberts DW, Marshall SJ, Dearden JC (2006) The aquatic toxicity of anionic surfactants to Daphnia magna-a comparative QSAR study of linear alkylbenzene sulphonates and ester sulphonates. Chemosphere 63:1443–1450

    Article  CAS  Google Scholar 

  • Jardak K, Drogui P, Daghrir R (2016) Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes. Environ Sci Pollut R Int 23(4):3195–3216

    Article  CAS  Google Scholar 

  • Jaschinski S, Brepohl DC, Sommer U (2011) The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquat Sci 73(1):91–101

    Article  CAS  Google Scholar 

  • Jones TW, Estes PS (1984) Uptake and phytotoxicity of soil-sorbed atrazine for the submerged aquatic plant, Potamogeton perfoliatus L. Arch Environ Con Tox 13(2):237–241

    Article  CAS  Google Scholar 

  • Jones TW, Kemp WM, Estes PS, Stevenson JC (1986) Atrazine uptake, photosynthetic inhibition, and shortterm recovery for the submersed vascular plant, Potamogeton perfoliatus L. Arch Environ Con Tox 15(3):277–283

    Article  CAS  Google Scholar 

  • Jonsson CM, Paraiba LC, Aoyama H (2009) Metals and linear alkylbenzene sulphonate as inhibitors of the algae Pseudokirchneriella subcapitata acid phosphatase activity. Ecotoxicology 18(5):610–619

    Article  CAS  Google Scholar 

  • Kráľová K, Šeršeň F, Ľudmila M, Devínsky F, Krempaská E (1992) Effect of surfactants on growth, chlorophyll content and hill reaction activity. Photosynthetica 29(3):440–475

    Google Scholar 

  • Lechuga M, Fernándezserrano M, Jurado E, Núñezolea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8

    Article  CAS  Google Scholar 

  • Lewis MA (1991) Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Water Res 25:101–113

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem Soc Trans 11:1982–1983

    Article  Google Scholar 

  • Liu N, Wu ZH (2018) Toxic effects of linear alkylbenzene sulfonate on chara vulgaris L. Environ Sci Pollut R 25(5):4934–4941

    Article  CAS  Google Scholar 

  • Liu HY, Zhou PH, Yang RB, Liao BH, Lu SQ, Yu PZ (2001) Effect of anionic surfactant linear alkylbenzene sulfonate (LAS) on physiological and biochemical characteristics of aquatic plants. Agro-environmental Protection 20(5):341–344

    Google Scholar 

  • Liu HY, Liao BH, Zhou PH, Yu PZ (2004) Toxicity of linear alkylbenzene sulfonate and alkylethoxylate to aquatic plants. B Environ Contam Tox 72(4):866–872

    Article  CAS  Google Scholar 

  • Merta J, Stenius P (1999) Interactions between cationic starch and anionic surfactants. Colloids Surf 149:367–377

    Article  CAS  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM (2009) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Sci Hortic-amsterdam 120(3):373–378

    Article  CAS  Google Scholar 

  • Misra V, Chawla G, Kumar V, Lal H, Viswanathan PN (1987) Effect of linear alkyl benzene sulfonate in skin of fish fingerlings (Cirrhina mrigala): observations with scanning electron microscope. Ecotoxicol Environ Saf 13(2):164–168

    Article  CAS  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K (2001) Physiological responses of lemna trisulca, L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161(5):881–889

    Article  CAS  Google Scholar 

  • Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Salin ML (1991) Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radical Res Com 13(1):851–858

    Article  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez MC, Romero-Puertas MC, Río LA (2001) Cadmium induces changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  Google Scholar 

  • Shi HT (2016) Experimental guidance on plant stress physiology. Science Press, Beijing

    Google Scholar 

  • Singh J, Chawla G, Naqvi SHN, Viswanathan PN (1994) Combined effects of cadmium and linear alkyl benzene sulfonate on Lemna minor L. Ecotoxicology 3(1):59–67

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, Dsouza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62(2):233–246

    Article  CAS  Google Scholar 

  • Song GA (2000) Prospects of surfactants used in home scour. Chem Industry Times 2:5–9

    Google Scholar 

  • Temmink H, Klapwijk B (2004) Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants. Water Res 38(4):903–912

    Article  CAS  Google Scholar 

  • Venhuis SH, Mehrvar M (2004) Health effects, environmental impacts, and photochemical degradation of selected surfactants in water. Int J Photoenergy 6:115–125

    Article  CAS  Google Scholar 

  • Verge C, Moreno A, Bravo J, Berna JL (2001) Influence of water hardness on the bioavailability and toxicity of linear alkylbenzene sulphonate (LAS). Chemosphere 44(8):1749–1757

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Waloszek A, Stanisław W (1994) Chloroplast pigment photobleaching and its effect on low temperature fluorescence spectra of chlorophyll in greening cucumber cotyledons. Photosynthetica 29(4):509–520

    Google Scholar 

  • Wang Z, Xiao BD, Song LR, Wu XQ, Zhang JQ, Wang CB (2011) Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology 20(4):803–814

    Article  CAS  Google Scholar 

  • Wang Z, Xiao B, Song L, Wang C, Zhang J (2012) Responses and toxin bioaccumulation in duckweed (lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress. J Hazard Mater 229-230:137–144

    Article  CAS  Google Scholar 

  • Wu ZH, Yu D, Wang D, Xia SL (2003) Structure and quantitative features of aquatic plant communities in the Hanjiang River. Acta Phytoecol Sinica 27(1):118–124

    Google Scholar 

  • Wu ZH, Yu D, Li JL, Wu GG, Niu XN (2010) Growth and antioxidant response in hydrocharis dubis (bl.) backer exposed to linear alkylbenzene sulfonate. Ecotoxicology 19(4):761–769

    Article  CAS  Google Scholar 

  • Wu KH, Xiao SQ, Chen Q, Wang QF, Zhang YN, Li KZ, Yu Y, Chen L (2013) Changes in the activity and transcription of antioxidant enzymes in response to Al stress in black soybeans. Plant Mol Biol Rep 31(1):141–150

    Article  CAS  Google Scholar 

  • Xu F, Yang ZF, Chen B, Zhao YW (2013) Impact of submerged plants on ecosystem health of the plant-dominated Baiyangdian Lake, China. Ecol Model 252(1):167–175

    Article  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115(4):1405–1412

    Article  CAS  Google Scholar 

  • Yu XZ, Stefan T, Zhou PH, Peng XY, Cao X (2006) Response of weeping willows to linear alkylbenzene sulfonate. Chemosphere 64(1):43–48

    Article  CAS  Google Scholar 

  • Zhao SJ, Xu CC, Zou Q, Meng QW (1991) Improvements of method for measurement of malondialdehvde in plant tissues. Plant Physiol Commun 30(3):207–210

    Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 31270410, No. 30970303), the Special Foundation of National Science and Technology Basic Research (2013FY112300), and the Scientific Research Project of Hubei Province Environmental Protection Department (2014HB07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wu, Z., Yu, D. et al. Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus L.. Environ Sci Pollut Res 25, 32303–32311 (2018). https://doi.org/10.1007/s11356-018-3204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3204-7

Keywords

Navigation