Skip to main content

Advertisement

Log in

Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Applications of nanotechnology in fish cultures have participated in getting over various difficulties that hinder fish productivity. They can achieve growth performance after adding some important minerals and vitamins in the form of nano-feed supplements like selenium, zinc, iron, and vitamin C. Also, they have an important role in reproduction, and fish medicine as antimicrobial, drug delivery, nano-vaccination, and rapid disease diagnosis. Moreover, their roles in water remediation and purification, and fish packaging are documented. On the other hand, some nanoparticles exhibit toxic effects on living organisms, which return to their tiny size, high reactivity, and permeability. They can alter many physiological functions and cause cytotoxicity, DNA damage, and histopathological changes. Also, nanotechnology applications cause new secondary pollutants to be introduced into the environment that can negatively affect fish health and the surrounding living organisms. So, in spite of the promising applications of nanotechnology to fulfill high growth performance and pathogen-free fish, there are a lot of debates about the potential toxicity of nanomaterials, their reactivity with the surrounding environment, and bioaccumulation. The present review aims to elucidate and discuss various advantages and challenges of nanotechnology applications in fish cultures. Also, it points to green nanotechnology as a promising alternative to chemical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

Abb:

Full name

A. hydrophila :

Aeromonas hydrophila

A. bestiarum :

Aeromonas bestiarum

A. invadans :

Aphanomyces invadans

Ag:

silver

Al2O3 :

aluminum oxide

ATP:

adenosine triphosphate

Au:

gold

AuCl4 :

tetra chloro aurate

B. subtilis :

Bacillus subtilis

C. auratus :

Carassius auratus

C. carpio :

Cyprinus carpio

Ca:

calcium

Cd:

cadmium

Cr:

chromium

Cu:

copper

DLS:

dynamic light scattering

DNA:

deoxyribonucleic acid

E. coli :

Escherichia coli

E. tarda :

Edwardsiella tarda

EC50 :

effective concentration

EDX:

energy-dispersive x-ray spectroscopy

F. branchiophilum :

Flavobacterium branchiophilum

F. columnare :

Flavobacterium columnare

FDA:

Food and Drug Administration

Fe:

iron

Fe2O3 :

ferric oxide

FT-IR:

Fourier transform infrared spectroscopy

I. multifiliis :

Ichthyophthirius multifiliis

ICP-MS:

inductively coupled plasma mass spectrometry

ISAV:

infectious Salmon Anemia Virus

L. garvieae :

Lactococcus garvieae

L. rohita :

Labeo rohita

La:

lanthanides

LC50 :

half lethal concentration that caused 50% mortality of organisms

M. rosenbergii :

Macrobrachium rosenbergii

MgO:

magnesium oxide

MnO:

manganese oxide

MON:

metal oxide nanoparticles

NPs:

nanoparticles

nZVI:

nano zero-valent iron

O. latipes :

Oryzias latipes

O. mykiss :

Oncorhynchus mykiss

O. niloticus :

Oreochromis niloticus

P. monodon :

Penaeus monodon

P. semisulcatus :

Penaeus semisulcatus

P. aeruginosa :

Pseudomonas aeruginosa

P. fluorescens :

Pseudomonas fluorescens

P. olivaceus :

Paralichthys olivaceus

Pb:

lead

PCBs:

polychlorinated biphenyls

PLGA:

poly lactic-glycolic acid

ROS:

reactive oxygen species

S. aureus :

Staphylococcus aureus

S. iniae :

Streptococcus iniae

Se:

selenium

SEM:

scanning electron microscopy

SiO2 :

silicon dioxide

TiO2 :

titanium dioxide

UV-vis:

ultraviolet-visible spectrophotometer

V. anguillarum :

Vibrio anguillarum

V. harveyi :

Vibrio harveyi

V. parahaemolyticus :

Vibrio parahaemolyticus

V. vulnificus :

Vibrio vulnificus

XRD:

X-ray powder diffraction

Zn:

zinc

ZP:

zeta potential measurement

References

  • Abdel-Khalek AA, Badran SR, Marie M-AS (2016a) Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers. Fish Physiol Biochem 42:1225–1236

    Article  CAS  Google Scholar 

  • Abdel-Khalek AA, Hamed A, Marie M-A (2016b) The Accumulation Potency of Bulk and Nano Zinc Metal and Their Impacts on the Hematological and Histological Perturbations of Oreochromis niloticus. Water Air Soil Pollut 227:206

    Article  CAS  Google Scholar 

  • Abdel-Razek N (2019): Antimicrobial activities of chitosan nanoparticles against pathogenic microorganisms in Nile tilapia, Oreochromis niloticus. Aquac Int, 1-16

  • Abdel-Tawwab M, Samir F, El-Naby ASA, Monier MN (2018) Antioxidative and immunostimulatory effect of dietary cinnamon nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.) and its susceptibility to hypoxia stress and Aeromonas hydrophila infection. Fish Shellfish Immunol 74:19–25

    Article  CAS  Google Scholar 

  • Abdel-Tawwab M, Razek NA, Abdel-Rahman AM (2019) Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol 88:254–258

    Article  CAS  Google Scholar 

  • Abdel-Wahhab MA, Aljawish A, Kenawy AM, El-Nekeety AA, Hamed HS, Abdel-Aziem SH (2016) Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus). Environ Toxicol Pharmacol 41:279–288

    Article  CAS  Google Scholar 

  • Abdou KA, Mohammed AN, Moselhy WAER, Farghali AA (2018) Assessment of Modified Rice Husk and Sawdust as Bio-adsorbent for Heavy Metals Removal Using Nano Particles in Fish Farm. Asian J Anim Vet Adv 13:180–188

    Article  CAS  Google Scholar 

  • Abu-Elala NM, AbuBakr HO, Khattab MS, Mohamed SH, El-hady MA, Ghandour RA, Morsi RE (2018a) Aquatic environmental risk assessment of chitosan/silver, copper and carbon nanotube nanocomposites as antimicrobial agents. Int J Biol Macromol 113:1105–1115

    Article  CAS  Google Scholar 

  • Abu-Elala NM, Attia MM, Abd-Elsalam RM (2018b) Chitosan-silver nanocomposites in goldfish aquaria: A new perspective in Lernaea cyprinacea control. Int J Biol Macromol 111:614–622

    Article  CAS  Google Scholar 

  • Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum R, Sealey W, Donahower B, LaPatra S, Sheridan P (2012) Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly (D, L-Lactic-Co-Glycolic Acid)] nanoparticles. J Fish Dis 35:203–214

    Article  CAS  Google Scholar 

  • Afifi M, Zinada OAA, Ali H, Couderchet M (2016) Zinc nanoparticles induced brain lesions and behavioral changes in two Tilapia species. Jpn J Vet Res 64:S161–S166

    Google Scholar 

  • Ahmad MH, El Mesallamy AM, Samir F, Zahran F (2011) Effect of cinnamon (Cinnamomum zeylanicum) on growth performance, feed utilization, whole-body composition, and resistance to Aeromonas hydrophila in nile tilapia. J Appl Aquac 23:289–298

    Article  Google Scholar 

  • Ahmed F, Soliman FM, Adly MA, Soliman HA, El-Matbouli M, Saleh M (2019) Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res Vet Sci

  • Akbary P, Jahanbakhshi A (2019) Nano and macro iron oxide (Fe2O3) as feed additives: Effects on growth, biochemical, activity of hepatic enzymes, liver histopathology and appetite-related gene transcript in goldfish (Carassius auratus). Aquaculture 510:191–197

    Article  CAS  Google Scholar 

  • Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  Google Scholar 

  • Alhadrami H, Al-Hazmi F (2017) Antibacterial activities of titanium oxide nanoparticles. J Bioelectron Nanotechnol 2(1):5

    Google Scholar 

  • Alishahi A, Mirvaghefi A, Tehrani M, Farahmand H, Koshio S, Dorkoosh F, Elsabee MZ (2011) Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym 86:142–146

    Article  CAS  Google Scholar 

  • Alishahi A, Proulx J, Aider M (2014): Chitosan as Biobased Nanocomposite in Seafood Industry and Aquaculture. Seafood Sci: Advances in Chemistry, Technology and Applications 211

  • Amaro M, Oaew S, Surareungchai W (2012) Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosens Bioelectron 38:157–162

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    Article  CAS  Google Scholar 

  • Ashraf M, Aklakur M, Sharma R, Ahmad S, Khan M (2011) Nanotechnology as a novel tool in fisheries and aquaculture development: a review. Iran J Energy Environ 2:258–261

    Google Scholar 

  • Ashraf PM, Edwin L (2016) Nano copper oxide incorporated polyethylene glycol hydrogel: an efficient antifouling coating for cage fishing net. Int Biodeterior Biodegradation 115:39–48

    Article  CAS  Google Scholar 

  • Assefa A, Abunna F (2018) Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int 2018:5432497

    Article  CAS  Google Scholar 

  • Atyah M, Zamri-Saad M, Siti-Zahrah A (2010) First report of methicillin-resistant Staphylococcus aureus from cage-cultured tilapia (Oreochromis niloticus). Vet Microbiol 144:502–504

    Article  CAS  Google Scholar 

  • Awad A, Zaglool AW, Ahmed SA, Khalil SR (2019) Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish Shellfish Immunol 93:336–343

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 30:118–125

    Article  CAS  Google Scholar 

  • Barakat KM, El-Sayed HS, Gohar YM (2016) Protective effect of squilla chitosan–silver nanoparticles for Dicentrarchus labrax larvae infected with Vibrio anguillarum. Int Aquat Res 8:179–189

    Article  Google Scholar 

  • Bhat IA, Ahmad I, Mir IN, Bhat RAH, Gireesh-Babu P, Goswami M, Sundaray J, Sharma R (2019) Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J Steroid Biochem Mol Biol 185:237–247

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Reddy J, Hasan MM, Adeyemi M, Marye RR (2015) Nanotechnology-a unique future technology in aquaculture for the food security. Int J Bioassays 4:4115–4126

    CAS  Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu G, Kumar GS, Nagarajan R, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38

    Article  CAS  Google Scholar 

  • Borase HP, Muley AB, Patil SV, Singhal RS (2019) Nano-eco toxicity study of gold nanoparticles on aquatic organism Moina macrocopa: As new versatile ecotoxicity testing model. Environ Toxicol Pharmacol 68:4–12

    Article  CAS  Google Scholar 

  • Buffet P-E, Tankoua OF, Pan J-F, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard J-C, Bérard J-B, Risso C (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–174

    Article  CAS  Google Scholar 

  • Cai C, Zhao M, Yu Z, Rong H, Zhang C (2019) Utilization of nanomaterials for in-situ remediation of heavy metal (loid) contaminated sediments: A review. Sci Total Environ 662:205–217

    Article  CAS  Google Scholar 

  • Can E, Kizak V, Kayim M, Can SS, Kutlu B, Ates M, Kocabas M, Demirtas N (2011) Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. J Mater Sci Eng 5:605–609

    Google Scholar 

  • Cavalieri F, Tortora M, Stringaro A, Colone M, Baldassarri L (2014) Nanomedicines for antimicrobial interventions. J Hosp Infect 88:183–190

    Article  CAS  Google Scholar 

  • Champ MA (2003) Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar Pollut Bull 46:935–940

    Article  CAS  Google Scholar 

  • Chen P-J, Su C-H, Tseng C-Y, Tan S-W, Cheng C-H (2011) Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar Pollut Bull 63:339–346

    Article  CAS  Google Scholar 

  • Chen W-F, Zhang J, Zhang X, Wang W, Li Y (2016) Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite. Environ Sci Pollut Res 23:1460–1470

    Article  CAS  Google Scholar 

  • Cheng T, Yao K, Yeh N, Chang C, Hsu H, Chien Y, Chang C (2009) Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens. Surf Coat Technol 204:1141–1144

    Article  CAS  Google Scholar 

  • Cheng T, Yao K, Yeh N, Chang C, Hsu H, Gonzalez F, Chang C (2011) Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater. Thin Solid Films 519:5002–5006

    Article  CAS  Google Scholar 

  • Chiavola A, Stoller M, Di Palma L, Boni MR (2017) Magnetic core nanoparticles coated by titania and alumina for water and wastewater remediation from metal contaminants. Chem Eng Trans 60:205–210

    Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Chris UO, Singh N, Agarwal A (2018) Nanoparticles as feed supplement on Growth behaviour of Cultured Catfish (Clarias gariepinus) fingerlings. Mater Today: Proceedings 5:9076–9081

    CAS  Google Scholar 

  • Chunglok W, Wuragil DK, Oaew S, Somasundrum M, Surareungchai W (2011) Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium. Biosens Bioelectron 26:3584–3589

    Article  CAS  Google Scholar 

  • Chupani L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange S-B, von Bergen M, Jehmlich N (2017) Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Total Environ 579:1504–1511

    Article  CAS  Google Scholar 

  • Cinelli M, Coles SR, Nadagouda MN, Błaszczyński J, Słowiński R, Varma RS, Kirwan K (2015) A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem 17:2825–2839

    Article  CAS  Google Scholar 

  • Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández-Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 551:334–343

    Article  CAS  Google Scholar 

  • Costa AS, Brandao HDM, da Silva S, Bentes-Sousa A, Diniz Junior J, Pinheiro J, Melo M, Silva Junior J, Matos E, Ribeiro-Costa R (2015) Mucoadhesive nanoparticles: a new perspective for fish drug application. Embrapa Gado de Leite-Nota Técnica/Nota Científica (ALICE) 39:503–506

    Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    Article  CAS  Google Scholar 

  • Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    Article  CAS  Google Scholar 

  • Dananjaya S, Godahewa G, Jayasooriya R, Lee J, De Zoysa M (2016) Antimicrobial effects of chitosan silver nano composites (CAgNCs) on fish pathogenic Aliivibrio (Vibrio) salmonicida. Aquaculture 450:422–430

    Article  CAS  Google Scholar 

  • Daniel S, Sironmani TA, Dinakaran S (2016) Nano formulations as curative and protective agent for fish diseases: studies on red spot and white spot diseases of ornamental gold fish Carassius auratus. Int J Fish Aquat Stud 4:255–261

    Google Scholar 

  • Dawood MA, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Esteban MA, Hassaan MS (2019a) Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45:219–230

    Article  CAS  Google Scholar 

  • Dawood MA, Zommara M, Eweedah NM, Helal AI (2019b) The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture 515:734571

    Article  CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133

    Article  Google Scholar 

  • Deng Y, Chen Q (2003) Affects of nano-selenium on the growth of nile tilapia (Oreochromis niloticus). Inland Aquat Prod 6:28–30

    Google Scholar 

  • Donbrow M (1991): Microcapsules and nanoparticles in medicine and pharmacy. CRC press

  • El-Greisy Z, El-Gamal A (2012) Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egypt J Aquat Res 38:59–66

    Article  Google Scholar 

  • El-Naby ASA, Al-Sagheer AA, Negm SS, Naiel MA (2020) Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture 515:734577

    Article  CAS  Google Scholar 

  • El-Naby FSA, Naiel MA, Al-Sagheer AA, Negm SS (2019) Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 501:82–89

    Article  CAS  Google Scholar 

  • Elsheshtawy A, Yehia N, Elkemary M, Soliman H (2019) Direct detection of unamplified Aeromonas hydrophila DNA in clinical fish samples using gold nanoparticle probe-based assay. Aquaculture 500:451–457

    Article  CAS  Google Scholar 

  • Faiz H, Zuberi A, Nazir S, Rauf M, Younus N (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: Comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agric Biol 17:568–574

    Article  CAS  Google Scholar 

  • Fajardo C, Ortíz L, Rodríguez-Membibre M, Nande M, Lobo M, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  Google Scholar 

  • Fan H-L, Zhou S-F, Jiao W-Z, Qi G-S, Liu Y-Z (2017) Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr Polym 174:1192–1200

    Article  CAS  Google Scholar 

  • FAO (2018) The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. FAO Rome, Italy

    Google Scholar 

  • Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R (2019) Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 138:103780

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Fenaroli F, Westmoreland D, Benjaminsen J, Kolstad T, Skjeldal FM, Meijer AH, van der Vaart M, Ulanova L, Roos N, Nyström B (2014) Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS Nano 8:7014–7026

    Article  CAS  Google Scholar 

  • Futalan CM, Kan C-C, Dalida ML, Pascua C, Wan M-W (2011) Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydr Polym 83:697–704

    Article  CAS  Google Scholar 

  • Gaffney AM, Santos-Martinez MJ, Satti A, Major TC, Wynne KJ, Gun'ko YK, Annich GM, Elia G, Radomski MW (2015) Blood biocompatibility of surface-bound multi-walled carbon nanotubes. Nanomedicine 11:39–46

    Article  CAS  Google Scholar 

  • Gardea-Torresdey J, Parsons J, Gomez E, Peralta-Videa J, Troiani H, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  Google Scholar 

  • Gerber LC, Moser N, Luechinger NA, Stark WJ, Grass RN (2012) Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide nanoparticles. Chem Commun 48:3869–3871

    Article  CAS  Google Scholar 

  • Ghasemi Z, Sourinejad I, Kazemian H, Rohani S (2018) Application of zeolites in aquaculture industry: a review. Rev Aquac 10:75–95

    Article  Google Scholar 

  • Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    Article  CAS  Google Scholar 

  • Gong J-L, Wang B, Zeng G-M, Yang C-P, Niu C-G, Niu Q-Y, Zhou W-J, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    Article  CAS  Google Scholar 

  • Gregory AE, Williamson D, Titball R (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13

    Article  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem: An International Journal 27:1972–1978

    Article  CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress Nat Sci: Materials International 22:693–700

    Article  Google Scholar 

  • Hamad MTMH (2019) Disinfection of El-Gharbia drain from pathogenic bacteria using chitosan–silver nanoparticles. Int J Environ Sci Technol 16:8267–8282

    Article  CAS  Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17:396–409

    Article  CAS  Google Scholar 

  • Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60

    Article  CAS  Google Scholar 

  • Hassan SW, El-latif HHA (2018) Characterization and Applications of the Biosynthesized Silver Nanoparticles by Marine Pseudomonas sp. H64. J Pure Appl Microbiol 12:1289–1300

    Article  CAS  Google Scholar 

  • He X, Deng H, Hwang H-M (2018) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  CAS  Google Scholar 

  • Hu Y-L, Qi W, Han F, Shao J-Z, Gao J-Q (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351

    CAS  Google Scholar 

  • Huang L, Xu Y, Guo S (2010) Disinfecting aquatic pathogenic bacteria by photocatalytic activity with nanometer TiO2. J Jimei Univ (Nat Sci) 4:54–57

    CAS  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Huang X, Lan Y, Liu Z, Huang W, Guo Q, Liu L, Hu M, Sui Y, Wu F, Lu W (2018) Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus. Sci Total Environ 640:726–735

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Ishwarya R, Vaseeharan B, Subbaiah S, Nazar AK, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-anbr MN (2018) Sargassum wightii-synthesized ZnO nanoparticles–from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. J Photochem Photobiol B Biol 183:318–330

    Article  CAS  Google Scholar 

  • Ishwarya R, Jayakumar R, Abinaya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Vaseeharan B (2019) Facile synthesis of haemocyanin-capped zinc oxide nanoparticles: Effect on growth performance, digestive-enzyme activity, and immune responses of Penaeus semisulcatus. Int J Biol Macromol 139:688–696

    Article  CAS  Google Scholar 

  • Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    Article  CAS  Google Scholar 

  • Jaroenram W, Arunrut N, Kiatpathomchai W (2012) Rapid and sensitive detection of shrimp yellow head virus using loop-mediated isothermal amplification and a colorogenic nanogold hybridization probe. J Virol Methods 186:36–42

    Article  CAS  Google Scholar 

  • Ji J, Torrealba D, Ruyra À, Roher N (2015) Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology 4:664–696

    Article  CAS  Google Scholar 

  • Jiang X, Valdeperez D, Nazarenus M, Wang Z, Stellacci F, Parak WJ, Del Pino P (2015) Future perspectives towards the use of nanomaterials for smart food packaging and quality control. Part Part Syst Charact 32:408–416

    Article  Google Scholar 

  • Jiménez-Fernández E, Ruyra A, Roher N, Zuasti E, Infante C, Fernández-Díaz C (2014) Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 432:426–433

    Article  CAS  Google Scholar 

  • Jimmy CY, Tang HY, Yu J, Chan H, Zhang L, Xie Y, Wang H, Wong S (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. J Photochem Photobiol A Chem 153:211–219

    Article  Google Scholar 

  • Johari S, Kalbassi M, Soltani M, Yu I (2013) Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iran J Fish Sci 12:76–95

    Google Scholar 

  • Johari SA, Kalbassi MR, Soltani M, Yu IJ (2016) Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquac Int 24:23–38

    Article  CAS  Google Scholar 

  • Joshi HD, Tiwari V, Gupta S, Sharma R, Lakra W, Sahoo U (2019) Application of nanotechnology for the production of masculinized Tilapia, Oreochromis niloticus (Linnaeus, 1758). Aquaculture 511:734206

    Article  Google Scholar 

  • Jovanović B, Anastasova L, Rowe EW, Zhang Y, Clapp AR, Palić D (2011) Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf 74:675–683

    Article  CAS  Google Scholar 

  • Jovanović B, Whitley EM, Kimura K, Crumpton A, Palić D (2015) Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ Pollut 203:153–164

    Article  CAS  Google Scholar 

  • Julio C, Aida H, María D, Jorge C, Jaime A (2018) Silver nanoparticles applications (AgNPS) in aquaculture. Int J Fish Aquat Stud 6:05–11

    Google Scholar 

  • Kalatehjari P, Yousefian M, Khalilzadeh MA (2015) Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs. Egypt J Aquat Res 41:303–306

    Article  Google Scholar 

  • Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Arul Ganesh MM, Subramanian P (2013) Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J Acad Indus Res 10:645–649

    Google Scholar 

  • Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z (2015) Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ Toxicol Pharmacol 40:936–947

    Article  CAS  Google Scholar 

  • Khan KU, Zuberi A, Nazir S, Fernandes JBK, Jamil Z, Sarwar H (2016) Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Tor putitora. Turk J Zool 40:704–712

    Article  CAS  Google Scholar 

  • Khan KU, Zuberi A, Nazir S, Ullah I, Jamil Z, Sarwar H (2017) Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquaculture Rep 5:70–75

    Article  Google Scholar 

  • Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24:17326–17346

    Article  Google Scholar 

  • Kitiyodom S, Yata T, Yostawornkul J, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, Rodkhum C, Pirarat N (2019) Enhanced efficacy of immersion vaccination in tilapia against columnaris disease by chitosan-coated “pathogen-like” mucoadhesive nanovaccines. Fish Shellfish Immunol 95:213–219

    Article  CAS  Google Scholar 

  • Klingelfus T, Disner G, Voigt C, Alle L, Cestari M, Leme D (2019) Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications. Chemosphere 215:703–709

    Article  CAS  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366

    Article  CAS  Google Scholar 

  • Korni F, Khalil F (2017) Effect of ginger and its nanoparticles on growth performance, cognition capability, immunity and prevention of motile Aeromonas septicaemia in Cyprinus carpio fingerlings. Aquac Nutr 23:1492–1499

    Article  CAS  Google Scholar 

  • Kuan GC, Sheng LP, Rijiravanich P, Marimuthu K, Ravichandran M, Yin LS, Lertanantawong B, Surareungchai W (2013) Gold-nanoparticle based electrochemical DNA sensor for the detection of fish pathogen Aphanomyces invadans. Talanta 117:312–317

    Article  CAS  Google Scholar 

  • Kumar PV, Pammi S, Kollu P, Satyanarayana K, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crop Prod 52:562–566

    Article  CAS  Google Scholar 

  • Kumar SR, Ahmed VI, Parameswaran V, Sudhakaran R, Babu VS, Hameed AS (2008) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol 25:47–56

    Article  CAS  Google Scholar 

  • Kumar V, Sharma N, Maitra S (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7:243–256

    Article  CAS  Google Scholar 

  • Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15:205–221

    Article  CAS  Google Scholar 

  • Lara HH, Ayala-Núñez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    Article  CAS  Google Scholar 

  • Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256

    Article  CAS  Google Scholar 

  • Li J, Chen Z, Huang R, Miao Z, Cai L, Du Q (2018a) Toxicity assessment and histopathological analysis of nano-ZnO against marine fish (Mugilogobius chulae) embryos. J Environ Sci 73:78–88

    Article  Google Scholar 

  • Li L, Lin SL, Deng L, Liu ZG (2013) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 36:987–995

    Article  CAS  Google Scholar 

  • Li M, Wu Q, Wang Q, Xiang D, Zhu G (2018b) Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebrafish larvae. Aquat Toxicol 199:212–219

    Article  CAS  Google Scholar 

  • Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Lima E, Guerra R, Lara V, Guzmán A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Central J 7:11

    Article  CAS  Google Scholar 

  • Liu P, Guo T, Wei H (2009a) Bactericidal effects of copper-bearing nano-montmorillonite on three aquatic pathogenic bacteria and two intestinal available bacteria in vitro. J Shanghai Ocean Univ 18:520–526

    CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M (2009b) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201

    Article  CAS  Google Scholar 

  • Lockman P, Mumper R, Khan M, Allen D (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28:1–13

    Article  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  • López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P (2012) Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem 61:260–267

    Article  CAS  Google Scholar 

  • Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    Article  Google Scholar 

  • Luis AIS, Campos EVR, de Oliveira JL, Fraceto LF (2019) Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Rev Aquac 11:119–132

    Article  Google Scholar 

  • Luo Z, Li M, Wang Z, Li J, Guo J, Rosenfeldt RR, Seitz F, Yan C (2018) Effect of titanium dioxide nanoparticles on the accumulation and distribution of arsenate in Daphnia magna in the presence of an algal food. Environ Sci Pollut Res 25:20911–20919

    Article  CAS  Google Scholar 

  • Mahmoud UM, Mekkawy IA, Naguib M, Sayed AE-DH (2019) Silver nanoparticle–induced nephrotoxicity in Clarias gariepinus: physio-histological biomarkers. Fish Physiol Biochem 45:1895–1905

    Article  CAS  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397

    Article  CAS  Google Scholar 

  • Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, S-i K, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  • Mekkawy IA, Mahmoud UM, Hana MN, Sayed AE-DH (2019) Cytotoxic and hemotoxic effects of silver nanoparticles on the African Catfish, Clarias gariepinus (Burchell, 1822). Ecotoxicol Environ Saf 171:638–646

    Article  CAS  Google Scholar 

  • Mishra M, Dashora K, Srivastava A, Fasake VD, Nag RH (2019) Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol Environ Saf 171:677–682

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter A, Andresen T (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503

    Article  CAS  Google Scholar 

  • Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5:23–29

    Article  Google Scholar 

  • Mohammad AM, Eldin TAS, Hassan MA, El-Anadouli BE (2017) Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arab J Chem 10:683–690

    Article  CAS  Google Scholar 

  • Mohanty B, Samanta S, Hassan M, Behera B, Pandit A, Manna R, Roy A, Meena D, Raman R, Sudhesan D (2017) Book of Abstracts: National Seminar on “Priorities in Fisheries and Aquaculture”(PFA-2017). ICAR–Central Inland Fisheries Research Institute, Barrackpore, pp 01–227

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68:278–283

    Article  CAS  Google Scholar 

  • Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol Trace Elem Res 160:56–66

    Article  CAS  Google Scholar 

  • Myhr AI, Myskja BK (2011) Precaution or integrated responsibility approach to nanovaccines in fish farming? A critical appraisal of the UNESCO precautionary principle. Nanoethics 5:73–86

    Article  Google Scholar 

  • Namdeo M, Bajpai S (2008) Chitosan–magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe (III) from aqueous solutions. Colloids Surf A Physicochem Eng Asp 320:161–168

    Article  CAS  Google Scholar 

  • Nikapitiya C, Dananjaya S, De Silva B, Heo G-J, Oh C, De Zoysa M, Lee J (2018) Chitosan nanoparticles: a positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. Fish Shellfish Immunol 76:240–246

    Article  CAS  Google Scholar 

  • Ochoa-Meza AR, Álvarez-Sánchez AR, Romo-Quiñonez CR, Barraza A, Magallón-Barajas FJ, Chávez-Sánchez A, García-Ramos JC, Toledano-Magaña Y, Bogdanchikova N, Pestryakov A (2019) Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish Shellfish Immunol 84:1083–1089

    Article  CAS  Google Scholar 

  • Odzak N, Kistler D, Sigg L (2017) Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut 226:1–11

    Article  CAS  Google Scholar 

  • Pandey S, Mishra SB (2011) Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361:509–520

    Article  CAS  Google Scholar 

  • Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10:1195–1208

    Article  CAS  Google Scholar 

  • Patil MP, Kim G-D (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101:79–92

    Article  CAS  Google Scholar 

  • Poguberović SS, Krčmar DM, Maletić SP, Kónya Z, Pilipović DDT, Kerkez DV, Rončević SD (2016) Removal of As (III) and Cr (VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49

    Article  Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  • Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B: Biointerfaces 108:255–259

    Article  CAS  Google Scholar 

  • Qian G, Chen W, Lim TT, Chui P (2009) In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives. J Hazard Mater 170:1093–1100

    Article  CAS  Google Scholar 

  • Qiao Y, Wu J, Xu Y, Fang Z, Zheng L, Cheng W, Tsang EP, Fang J, Zhao D (2017) Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol Eng 106:515–522

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  • Raissy M, Ansari M (2011) In vitro antimicrobial effect of silver nanoparticles on Lactococcus garvieae and Streptococcus iniae. Afr J Microbiol Res 5:4442–4445

    CAS  Google Scholar 

  • Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Basha KA, Hameed AS (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 26:429–437

    Article  CAS  Google Scholar 

  • Rajkumar K, Kanipandian N, Thirumurugan R (2016) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 6:19–29

    Article  CAS  Google Scholar 

  • Ramalingam M, Jabbari E, Ramakrishna S, Khademhosseini A (2013): Micro and Nanotechnologies in Engineering Stem Cells and Tissues, 39. John Wiley & Sons

  • Ramamoorthy S, Kannaiyan P, Moturi M, Devadas T, Muthuramalingam J, Natarajan L, Arunachalam N, Ponniah AG (2013) Antibacterial activity of zinc oxide nanoparticles against Vibrio harveyi. Indian J Fish 60:107–112

    Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout,(Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951

    Article  CAS  Google Scholar 

  • Rather M, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya V (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquac J 16:3

    Google Scholar 

  • Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya V, Jadhao SB (2013) Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS One 8:e57094

    Article  CAS  Google Scholar 

  • Regier N, Cosio C, Von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  CAS  Google Scholar 

  • Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48:1039–1042

    Article  CAS  Google Scholar 

  • Remya AS, Ramesh M, Saravanan M, Poopal RK, Bharathi S, Nataraj D (2015) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: Impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J King Saud Univ-Sci 27:151–160

    Article  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Ren X, Zhao X, Duan X, Fang Z (2018) Enhanced bio-concentration of tris (1, 3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Pollut 233:612–622

    Article  CAS  Google Scholar 

  • Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  • Rivas-Aravena A, Fuentes Y, Cartagena J, Brito T, Poggio V, La Torre J, Mendoza H, Gonzalez-Nilo F, Sandino AM, Spencer E (2015) Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immunol 45:157–166

    Article  CAS  Google Scholar 

  • Robinson E, Menghe H (2006) Catfish nutrition: Feeds. Mississippi State Univ Ext Serv Publ 2413:03–06

    Google Scholar 

  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702

    Article  CAS  Google Scholar 

  • Saleh M, Soliman H, Haenen O, El-Matbouli M (2011) Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis 34:845–852

    Article  CAS  Google Scholar 

  • Saleh M, Soliman H, Schachner O, El-Matbouli M (2012) Direct detection of unamplified spring viraemia of carp virus RNA using unmodified gold nanoparticles. Dis Aquat Org 100:3–10

    Article  CAS  Google Scholar 

  • Saleh M, Kumar G, Abdel-Baki A-A, Al-Quraishy S, El-Matbouli M (2016) In vitro antimicrosporidial activity of gold nanoparticles against Heterosporis saurida. BMC Vet Res 12:44

    Article  CAS  Google Scholar 

  • Saleh M, Abdel-Baki A-A, Dkhil MA, El-Matbouli M, Al-Quraishy S (2017) Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology 144:1802–1810

    Article  CAS  Google Scholar 

  • Sayed AE-DH (2016) Genotoxicity detection following exposure to silver nanoparticles in African catfish (Clarias gariepinus). Int J Nanoparticles 9:41–53

    Article  CAS  Google Scholar 

  • Seetang-Nun Y, Jaroenram W, Sriurairatana S, Suebsing R, Kiatpathomchai W (2013) Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification. Mol Cell Probes 27:71–79

    Article  CAS  Google Scholar 

  • Sele V, Ørnsrud R, Sloth JJ, Berntssen MH, Amlund H (2018) Selenium and selenium species in feeds and muscle tissue of Atlantic salmon. J Trace Elem Med Biol 47:124–133

    Article  CAS  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine 12:701–710

    Article  CAS  Google Scholar 

  • Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M (2017) In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand 59:49

    Article  CAS  Google Scholar 

  • Shaik S, Kummara MR, Poluru S, Allu C, Gooty JM, Kashayi CR, Subha MCS (2013) A green approach to synthesize silver nanoparticles in starch-co-poly (acrylamide) hydrogels by tridax procumbens leaf extract and their antibacterial activity. Int J Carbohydr Chem 2013:1–10

    Article  Google Scholar 

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097

    Article  CAS  Google Scholar 

  • Sivaramasamy E, Zhiwei W, Li F, Xiang J (2016) Enhancement of vibriosis resistance in Litopenaeus vannamei by supplementation of biomastered silver nanoparticles by Bacillus subtilis. J Nanomed Nanotechnol 7:2

    Article  CAS  Google Scholar 

  • Soliman WS, Shaapan RM, Mohamed LA, Gayed SS (2019) Recent biocontrol measures for fish bacterial diseases, in particular to probiotics, bio-encapsulated vaccines, and phage therapy. Open Vet J 9:190–195

    Article  Google Scholar 

  • Song L, Vijver MG, Peijnenburg WJ, Galloway TS, Tyler CR (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189

    Article  CAS  Google Scholar 

  • Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5:1

    Article  CAS  Google Scholar 

  • Sørum H (2008): Antibiotic resistance associated with veterinary drug use in fish farms, Improving farmed fish quality and safety. Elsevier, pp. 157-182

  • Srinivasan V, Bhavan PS, Rajkumar G, Satgurunathan T, Muralisankar T (2016) Effects of dietary iron oxide nanoparticles on the growth performance, biochemical constituents and physiological stress responses of the giant freshwater prawn Macrobrachium rosenbergii post-larvae. Int J Fish Aquat Stud 4:170–182

    Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    Article  CAS  Google Scholar 

  • Subara D, Jaswir I, Alkhatib MFR, Noorbatcha IA (2018) Synthesis of fish gelatin nanoparticles and their application for the drug delivery based on response surface methodology. Adv Nat Sci Nanosci Nanotechnol 9:045014

    Article  CAS  Google Scholar 

  • Subramani K, Elhissi A, Subbiah U, Ahmed W (2019): Introduction to nanotechnology, Nanobiomaterials in Clinical Dentistry. Elsevier, pp. 3-18

  • Sumbayev VV, Yasinska IM, Gibbs BF (2013) Biomedical applications of gold nanoparticles. In: Recent advances in circuits, communications and signal processing. WSEAS Press, Athens, pp 342–348

    Google Scholar 

  • Sumi N, Chitra K (2019) Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquat Toxicol 210:196–206

    Article  CAS  Google Scholar 

  • Swain P, Nayak S, Sasmal A, Behera T, Barik S, Swain S, Mishra S, Sen A, Das J, Jayasankar P (2014) Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 30:2491–2502

    Article  CAS  Google Scholar 

  • Tang W-W, Zeng G-M, Gong J-L, Liang J, Xu P, Zhang C, Huang B-B (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468:1014–1027

    Article  CAS  Google Scholar 

  • Tawfik M, Moustafa M, Abumourad I, El-Meliegy E, Refai M (2017) Evaluation of Nano Zinc Oxide feed additive on tilapia Growth and Immunity, 15th International Conference on Environmental Science and Technology. Rhodes, Greece

    Google Scholar 

  • Tayel AA, Elsaied BE, Diab AM (2019): Nanotechnology for Aquaculture, Nanoscience for Sustainable Agriculture. Springer, pp 479-544

  • Tello-Olea M, Rosales-Mendoza S, Campa-Córdova A, Palestino G, Luna-González A, Reyes-Becerril M, Velazquez E, Hernandez-Adame L, Angulo C (2019) Gold nanoparticles (AuNP) exert immunostimulatory and protective effects in shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol 84:756–767

    Article  CAS  Google Scholar 

  • Tian J, Sun X, Chen X, Yu J, Qu L, Wang L (2008) The formulation and immunisation of oral poly (DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int Immunopharmacol 8:900–908

    Article  CAS  Google Scholar 

  • Torchilin VP (2006): Nanoparticulates as drug carriers. Imperial college press

  • Tripathi DK, Tripathi A, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay R (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Article  Google Scholar 

  • Tuševljak N, Dutil L, Rajić A, Uhland F, McClure C, St-Hilaire S, Reid-Smith R, McEwen S (2013) Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals. Zoonoses Public Health 60:426–436

    Article  CAS  Google Scholar 

  • Twiddy D, Reilly P, Chatham K (1995): Occurrence of antibiotic-resistant human-pathogens in integrated fish farms. FAO Fish Rep 23-37

  • Valero Y, Awad E, Buonocore F, Arizcun M, Esteban MÁ, Meseguer J, Chaves-Pozo E, Cuesta A (2016) An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev Comp Immunol 65:64–72

    Article  CAS  Google Scholar 

  • Vaseeharan B, Ramasamy P, Chen J (2010) Antibacterial activity of silver nanoparticles (AgNps) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett Appl Microbiol 50:352–356

    Article  CAS  Google Scholar 

  • Velmurugan P, Iydroose M, Lee S-M, Cho M, Park J-H, Balachandar V, Oh B-T (2014) Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54:196–202

    Article  CAS  Google Scholar 

  • Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R, Ethiraj K (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J 2014:938272

    Article  CAS  Google Scholar 

  • Vinay TN, Bhat S, Gon Choudhury T, Paria A, Jung M-H, Shivani Kallappa G, Jung S-J (2018) Recent advances in application of nanoparticles in fish vaccine delivery. Rev Fish Sci Aquac 26:29–41

    Article  Google Scholar 

  • Vinod V, Saravanan P, Sreedhar B, Devi DK, Sashidhar R (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B: Biointerfaces 83:291–298

    Article  CAS  Google Scholar 

  • Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 6:765

    CAS  Google Scholar 

  • Wang X, Qu R, Liu J, Wei Z, Wang L, Yang S, Huang Q, Wang Z (2016) Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Environ Pollut 208:732–738

    Article  CAS  Google Scholar 

  • Wang Y, Yan X, Fu L (2013) Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. Int J Nanomedicine 8:4007

    Article  CAS  Google Scholar 

  • Wu L-p, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26:1198–1211

    Article  CAS  Google Scholar 

  • Xia IF, Cheung JS, Wu M, Wong K-S, Kong H-K, Zheng X-T, Wong K-H, Kwok KW (2019) Dietary chitosan-selenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish Shellfish Immunol 87:449–459

    Article  CAS  Google Scholar 

  • Yin Y, Yang X, Zhou X, Wang W, Yu S, Liu J, Jiang G (2015) Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. J Environ Sci 34:116–125

    Article  CAS  Google Scholar 

  • Yirsaw BD, Megharaj M, Chen Z, Naidu R (2016) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci 44:88–98

    Article  CAS  Google Scholar 

  • Yostawonkul J, Kitiyodom S, Kaewmalun S, Suktham K, Nittayasut N, Khongkow M, Namdee K, Ruktanonchai UR, Rodkhum C, Pirarat N (2019) Bifunctional clove oil nanoparticles for anesthesia and anti-bacterial activity in Nile tilapia (Oreochromis niloticus). Aquaculture 503:589–595

    Article  CAS  Google Scholar 

  • Zhang J, Guo W, Li Q, Wang Z, Liu S (2018) The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci: Nano 5:2482–2499

    CAS  Google Scholar 

  • Zhang W-X, Wang C-B, Lien H-L (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

  • Zhao D, Wang J, Sun B, Sun B, Gao J, Xu R (2000) Development and application of TiO2 photocatalysis as antimicrobialagent. J Liaoning Univ (Nat Sci Ed) 2:173–174

    Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, Middelberg AP (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  Google Scholar 

  • Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291:78–81

    Article  CAS  Google Scholar 

  • Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7:e46286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wafaa Abbas is the only author who wrote and revised this review article.

Corresponding author

Correspondence to Wafaa Tawfik Abbas.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, W.T. Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. Environ Sci Pollut Res 28, 7669–7690 (2021). https://doi.org/10.1007/s11356-020-12166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12166-0

Keywords

Navigation