Skip to main content

Advertisement

Log in

Eugenol attenuates TiO2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food, edible dyes, and other commercial products. Human exposure to TiO2 NPs has raised concerns regarding their toxic potential. Various studies have evaluated the TiO2 NPs-induced toxicity, oxidative damage to the cellular components, and genotoxicity. In the present study, we examined whether co-treatment with the dietary antioxidant eugenol can attenuate or protect against TiO2 NPs-induced toxicity. We exposed the adult male Wistar rats to TiO2 NPs (150 mg/kg body weight) by intraperitoneal injection (i.p.) either alone or as co-treatment with eugenol (1-10 mg/kg body weight) once a day for 14 days. The untreated rats were supplied saline and served as control. Titanium (Ti) accumulation in various tissues was analyzed by inductively coupled plasma mass spectrometry. Serum levels of liver and kidney biomarkers and oxidative stress markers in the liver, kidney, and spleen were determined. A significant increase in hydrogen peroxide level confirmed that oxidative stress occurred in these tissues. TiO2 NPs induced oxidation of lipids, and decreased glutathione level and antioxidant enzyme activity in the kidney, liver, and spleen of treated rats. TiO2 NPs also increased the serum levels of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, albumin, and total cholesterol and decreased the blood urea nitrogen, uric acid, and total bilirubin in serum, which indicates oxidative damage to the liver and kidney. In eugenol and TiO2 NPs co-treated rats, all these changes were mitigated. Single-cell gel electrophoresis (comet assay) of lymphocytes showed longer comet tail length in TiO2 NPs-treated groups, indicating DNA damage while tail length was reduced in eugenol and TiO2 NPs co-treated groups. Thus, it seems that eugenol can be used as a chemoprotective agent against TiO2 NPs-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abd El Motteleb DM, Selim SA, Mohamed AM (2014) Differential effects of eugenol against hepatic inflammation and overall damage induced by ischemia/re-perfusion injury. J Immunotoxicol 11:238–245

    Article  CAS  Google Scholar 

  • Abdelazeim SA, Shehata NI, Aly HF, Shams SG (2020) Amelioration of oxidative stress-mediated apoptosis in copper oxide nanoparticles-induced liver injury in rats by potent antioxidants. Sci Rep 10:1–4

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Afaq F, Abidi P, Matin R, Rahman Q (1998) Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol 18:307–312

    Article  CAS  Google Scholar 

  • Alarifi DAS, Al-Doaiss AA, Ali BA, Ahmed M, Al-Khedhairy AA (2013) Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats. Int J Nanomedicine 8:3937–3943

    Google Scholar 

  • Allen R (2016) The cytotoxic and genotoxic potential of titanium dioxide (TiO2) nanoparticles on human SH-SY5Y neuronal cells in vitro. The Plymouth Student Scientist 9:5–28

    Google Scholar 

  • Al-Okbi SY, Mohamed DA, Hamed TE, Edris AE (2014) Protective effect of clove oil and eugenol microemulsions on fatty liver and dyslipidemia as components of metabolic syndrome. J Med Food 17:764–771

    Article  CAS  Google Scholar 

  • Azim SAA, Darwish HA, Rizk MZ, Ali SA, Kadry MO (2015) Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants. Exp Toxicol Pathol 67:305–314

    Article  CAS  Google Scholar 

  • Baranowska-Wojcik E, Szwajgier D, Oleszczuk P et al (2020) Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res 193:118–129

    Article  CAS  Google Scholar 

  • Behnam MA, Emami F, Sobhani Z, Dehghanian AR (2018) The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran J Basic Med Sci 21:1133–1139

    Google Scholar 

  • Beutler E (1984) Red cell metabolism: a manual of biochemical methods, 3rd edn. Grune and Stratton, New York

    Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  • Bin-Meferij MM, Hamida RS (2019) Biofabrication and antitumor activity of silver nanoparticles utilizing novel Nostoc sp. Bahar M. Int J Nanomedicine 14:9019–9029

    Article  CAS  Google Scholar 

  • Binu P, Nellikunnath Priya MP, Abhilash S, Vineetha RC, Nair H (2018) Protective effects of eugenol against hepatotoxicity induced by arsenic trioxide: an antileukemic drug. Iran J Med Sci 43:305

    Google Scholar 

  • Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29:330–337

    Article  CAS  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    Article  CAS  Google Scholar 

  • Dobrzyńska MM, Gajowik A, Radzikowska J, Lankoff A, Dušinská M, Kruszewski M (2014) Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 315:86–91

    Article  CAS  Google Scholar 

  • Dorier M, Béal D, Marie-Desvergne C, Dubosson M, Barreau F, Houdeau E, Herlin-Boime N, Carriere M (2017) Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology 11:751–761

    CAS  Google Scholar 

  • Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X, Yan J (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31:894–899

    Article  CAS  Google Scholar 

  • Dubchak S, Ogar A, Mietelski J, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Article  Google Scholar 

  • Elbahy DA, Madkour HI, Abdel-Raheem MH (2015) Evaluation of antihyperlipidemic activity of eugenol in triton induced hyperlipidemia in rats. Int J Res Stud Biosci 3:19–26

    Google Scholar 

  • Faust JJ, Doudrick K, Yang Y, Westerhoff P, Capco DG (2014) Food grade titanium dioxide disrupts intestinal brush border micro- villi in vitro independent of sedimentation. Cell Biol Toxicol 30:169–188

    Article  CAS  Google Scholar 

  • Fen W, Jin L, Xie Q, Huang L, Jiang Z, Ji Y, Li C, Yang L, Wang D (2018) Eugenol protects the transplanted heart against ischemia/reperfusion injury in rats by inhibiting the inflammatory response and apoptosis. Exp Ther Med 16:3464–3470

    Google Scholar 

  • Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L (2015) Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 10:4321–4340

    CAS  Google Scholar 

  • Fouda A, Saad E, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261

    Article  CAS  Google Scholar 

  • Gonzalez-Esquivel AE, Charles-Niño CL, Pacheco-Moisés FP et al (2015) Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO2) nanoparticles in rats. Toxicol Mech Methods 25:166–175

    Article  CAS  Google Scholar 

  • Hamida RS, Albasher G, Bin-Meferij MM (2020a) Oxidative stress and apoptotic responses elicited by Nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers 12:2099

    Article  CAS  Google Scholar 

  • Hamida RS, Ali MA, Goda DA, Khalil MI, Al-Zaban MI (2020b) Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant staphylococcus aureus (MRSA) strain. Front Bioeng Biotechnol 8:433

    Article  Google Scholar 

  • Harb AA, Bustanji YK, Almasri IM, Abdalla SS (2019) Eugenol reduces LDL cholesterol and hepatic steatosis in hypercholesterolemic rats by modulating TRPV1 receptor. Sci Rep 9:14003

    Article  CAS  Google Scholar 

  • Hassan SE-D, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, el-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393

    Article  CAS  Google Scholar 

  • Hassanein KM, El-Amir YO (2017) Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague-Dawley rats. Pathol Res Pract 213:13–22

    Article  CAS  Google Scholar 

  • He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  CAS  Google Scholar 

  • Hilal AM, Fatima M, Hossain MM, Mondal AC (2018) Determination of potential oxidative damage, hepatotoxicity, and cytogenotoxicity in male Wistar rats: role of indomethacin. J Biochem Mol Toxicol 32:e22226

    Article  CAS  Google Scholar 

  • Huang X, Liu Y, Lu Y, Ma C (2015) Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status. Int Immunopharmacol 26:265–271

    Article  CAS  Google Scholar 

  • Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M (2012) Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 6:501–513

    Article  CAS  Google Scholar 

  • Kan H, Wu Z, Lin YC, Chen TH, Cumpston JL, Kashon ML, Leonard S, Munson AE, Castranova V (2014) The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide. Nanotoxicology 8:447–454

    Article  CAS  Google Scholar 

  • Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM (2020) Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ Sci Pollut Res 27:19169–19184

    Article  CAS  Google Scholar 

  • Kansara K, Patel P, Shah D, Shukla RK, Singh S, Kumar A, Dhawan A (2015) TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen 56:204–217

    Article  CAS  Google Scholar 

  • Kaur G, Athar M, Alam MS (2010) Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol Carcinog 49:290–301

    Article  CAS  Google Scholar 

  • Lee KG, Shibamoto T (2001) Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem 74:443–448

    Article  CAS  Google Scholar 

  • Li N, Duan Y, Hong M, Zheng L, Fei M, Zhao X, Wang J, Cui Y, Liu H, Cai J, Gong S (2010) Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicol Lett 165:161–168

    Article  CAS  Google Scholar 

  • Liang G, Pu Y, Yin L, Liu R, Ye B, Su Y, Li Y (2009) Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxic Environ Health A 72:740–745

    Article  CAS  Google Scholar 

  • Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 29:170–180

    Article  CAS  Google Scholar 

  • Liu H, Ma L, Liu J, Zhao J, Yan J, Hong F (2010a) Toxicity of nano-anatase TiO2 to mice: liver injury, oxidative stress. Toxicol Environ Chem 92:175–186

    Article  CAS  Google Scholar 

  • Liu R, Zhang X, Pu Y, Yin L, Li Y, Zhang X, Liang G, Li X, Zhang J (2010b) Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J Nanosci Nanotechnol 10:5161–5169

    Article  CAS  Google Scholar 

  • Liu E, Zhou Y, Liu Z, Li J, Zhang D, Chen J, Cai Z (2015) Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J Nanomater 2015:1–8. https://doi.org/10.1155/2015/390358

    Article  Google Scholar 

  • Lone Y, Bhide M, Koiri RK (2017) Amelioratory effect of coenzyme Q10 on potential human carcinogen Microcystin-LR induced toxicity in mice. Food Chem Toxicol 102:176–185

    Article  CAS  Google Scholar 

  • Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) The determination of protein in biologic samples. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Mahdieh Y, Mohammad E, Sajad BM, Hossein D, Sajad S, Sanam FS, Modaresi M (2015) The effects of titanium dioxide nanoparticle on blood proteins in mice. J Chem Pharm Res 7:736–739

    CAS  Google Scholar 

  • Maheshwari N, Mahmood R (2020) Protective effect of catechin on pentachlorophenol-induced cytotoxicity and genotoxicity in isolated human blood cells. Environ Sci Pollut Res 27:13826–13843

    Article  CAS  Google Scholar 

  • Maheshwari N, Khan FH, Mahmood R (2018) 3,4-Dihydroxybenzaldehyde lowers ROS generation and protects human red blood cells from arsenic (III) induced oxidative damage. Environ Toxicol 33:861–875. https://doi.org/10.1002/tox.22572

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  • Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R (2012) Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology 302:146–156

    Article  CAS  Google Scholar 

  • Meena R, Paulraj R (2012) Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat. Toxicol Environ Chem 94:146–163

    Article  CAS  Google Scholar 

  • Meena R, Rani M, Pal R, Rajamani P (2012) Nano- TiO2-induced apoptosis by oxidative stress-mediated DNA damage and activation of p53 in human embryonic kidney cells. Appl Biochem Biotechnol 167:791–808

    Article  CAS  Google Scholar 

  • Mehrotra A, Trigun SK (2012) Moderate grade hyperammonemia induced concordant activation of antioxidant enzymes is associated with prevention of oxidative stress in the brain slices. Neurochem Res 37:171–181

    Article  CAS  Google Scholar 

  • Mohammed ET, Safwat GM (2020) Grape seed proanthocyanidin extract mitigates titanium dioxide nanoparticle (TiO2 NPs)-induced hepatotoxicity through TLR-4/NF-κB signaling pathway. Biol Trace Elem Res 196:579–589

    Article  CAS  Google Scholar 

  • MubarakAli D, Arunkumar J, Nag KH, SheikSyedIshack KA, Baldev E, Pandiaraj D, Thajuddin N (2013) Gold nanoparticles from pro and eukaryotic photosynthetic microorganisms—comparative studies on synthesis and its application on biolabelling. Colloids Surf B: Biointerfaces 103:166–173

    Article  CAS  Google Scholar 

  • Nagababu E, Rifkind JM, Boindala S, Nakka L (2010) Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol 610:165–180

    Article  CAS  Google Scholar 

  • Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharmacol 7:27–31

    Article  Google Scholar 

  • Nishimori H, Kondoh M, Isoda K, Tsunoda SI, Tsutsumi Y, Yagi K (2009) Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72(496):501

    Google Scholar 

  • Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635

    Article  CAS  Google Scholar 

  • Parveen N, Umar A, Gupta S, Singh S, Shadab GG (2014) Amelioration of iron induced clastogenicity and DNA damage in Wistar rats by thymoquinone. Sci Adv Mater 6:933–945

    Article  CAS  Google Scholar 

  • Pathak J, Ahmed H, Singh DK, Pandey A, Singh SP, Sinha RP (2019) Recent developments in green synthesis of metal nanoparticles utilizing cyanobacterial cell factories. In: Durgesh KT (ed) Nanomaterials in plants, algae and microorganisms. Academic Press, Elsevier, pp 237–265

    Chapter  Google Scholar 

  • Pramod K, Ansari SH, Ali J (2010) Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun 5:1999–2006

    CAS  Google Scholar 

  • Prasad SN (2013) Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem Res 38:330–345

    Article  CAS  Google Scholar 

  • Proquin H, Rodríguez-Ibarra C, Moonen CG, Urrutia Ortega IM, Briedé JJ, de Kok TM, van Loveren H, Chirino YI (2017) Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis 32:139–149

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 12 Nov 2019

  • Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med 2014:1–12. https://doi.org/10.1155/2014/642942

    Article  Google Scholar 

  • Ren W, Zeng L, Shen Z, Xiang L, Gong A, Zhang J, Mao C, Li A, Paunesku T, Woloschak GE, Hosmane NS, Wu A (2013) Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers. RSC Adv 3:20855–20855

    Article  CAS  Google Scholar 

  • Rossi S, Savi M, Mazzola M, Pinelli S, Alinovi R, Gennaccaro L, Pagliaro A, Meraviglia V, Galetti M, Lozano-Garcia O, Rossini A (2019) Subchronic exposure to titanium dioxide nanoparticles modifies cardiac structure and performance in spontaneously hypertensive rats. Part Fibre Toxicol 16:25

    Article  CAS  Google Scholar 

  • Sakat MS, Kilic K, Akdemir FN, Yildirim S, Eser G, Kiziltunc A (2019) The effectiveness of eugenol against cisplatin-induced ototoxicity. Braz J Otorhinolaryngol 85:766–773

    Article  Google Scholar 

  • Salem SS, Fouda MM, Fouda A et al (2020) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 7:1–11

    Google Scholar 

  • Schmid G (2011) Nanoparticles: from theory to application. Wiley, Weinheim

    Google Scholar 

  • Shakeel M, Jabeen F, Qureshi NA, Fakhr-e-Alam M (2016) Toxic effects of titanium dioxide nanoparticles and titanium dioxide bulk salt in the liver and blood of male Sprague-Dawley rats assessed by different assays. Biol Trace Elem Res 173:405–426

    Article  CAS  Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  CAS  Google Scholar 

  • Sies H (2000) What is oxidative stress? In: Keaney JF (ed) Oxidative stress and vascular disease. Kluwer Academic, Boston, pp 1–8

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1998) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  • Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA, Krivtsova EK, Durnev AD (2011) Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six tissues of mice in vivo. Mutat Res 726:8–14

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  CAS  Google Scholar 

  • Tiku AB, Abraham SK, Kale RK (2004) Eugenol as an in vivo radioprotective agent. J Radiat Res 45:435–440

    Article  CAS  Google Scholar 

  • Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50:600–613

    CAS  Google Scholar 

  • Valentini X, Rugira P, Frau A, Tagliatti V, Conotte R, Laurent S, Colet JM, Nonclercq D (2019) Hepatic and renal toxicity induced by TiO2 nanoparticles in rats: a morphological and metabonomic study. Journal of Toxicology 2019:1–19. https://doi.org/10.1155/2019/5767012

    Article  CAS  Google Scholar 

  • Venkadeswaran K, Muralidharan AR, Annadurai T, Ruban VV, Sundararajan M, Anandhi R, Thomas PA, Geraldine P (2014) Antihypercholesterolemic and antioxidative potential of an extract of the plant, Piper betle, and its active constituent, eugenol, in triton WR-1339-induced hypercholesterolemia in experimental rats. Evid Based Complement Alternat Med 2014:1–11. https://doi.org/10.1155/2014/478973

    Article  Google Scholar 

  • Vijayasteltar L, Nair GG, Maliakel B, Kuttan R (2016) Safety assessment of a standardized polyphenolic extract of clove buds: subchronic toxicity and mutagenicity studies. Toxicol Rep 3:439–449

    Article  CAS  Google Scholar 

  • Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, Li Y, Ge C, Zhou G, Li B, Zhao Y, Chai Z, Chen C (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90

    Article  CAS  Google Scholar 

  • Wang J, Li NZ, Wang L, Wang S, Zhao Y, Duan X, Cui Y, Zhou M, Cai J, Gong S (2011) P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol Trace Elem Res 140:186–197

    Article  CAS  Google Scholar 

  • Wani MR, Shadab GG (2020) Titanium dioxide nanoparticle genotoxicity: a review of recent in vivo and in vitro studies. Toxicol Ind Health 36:514–530

    Article  CAS  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Wilke CO (2019) cowplot: streamlined plot theme and plot annotations for 'ggplot2'. R package version 0.9.4. https://CRAN.R-project.org/package=cowplot Accessed 12 November 2019

  • Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190

    Article  CAS  Google Scholar 

  • Xie G, Wang C, Sun J, Zhong G (2011) Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. Toxicol Lett 205:55–61

    Article  CAS  Google Scholar 

  • Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 8:e70618

    Article  CAS  Google Scholar 

  • Xu P, Wang R, Ouyang J, Chen B (2015) A new strategy for TiO2 whiskers mediated multi-mode cancer treatment. Nanoscale Res Lett 10:94–104

    Article  CAS  Google Scholar 

  • Yogalakshmi B, Viswanathan P, Anuradha CV (2010) Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology 268:204–212

    Article  CAS  Google Scholar 

  • Younes NRB, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, el Ghoul J, el Mir L, Rhouma KB, Abdelmelek H, Sakly M (2015) Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res 22:8728–8737

    Article  CAS  Google Scholar 

  • Yuan YG, Zhang S, Hwang JY, Kong IK (2018) Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxidative Med Cell Longev 2018:1–21. https://doi.org/10.1155/2018/6121328

    Article  CAS  Google Scholar 

  • Zhao J, Li N, Wang S, Zhao X, Wang J, Yan J, Ruan J, Wang H, Hong F (2010) The mechanism of oxidative damage in the nephrotoxicity of mice caused by nano-anatase TiO2. J Exp Nanosci 5:447–462

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.R.W is the recipient of DST INSPIRE Fellowship from the Department of Science and Technology (DST), New Delhi. The authors thank University Sophisticated Instrument Facility (USIF), AMU, Aligarh, for SEM and SAIF, Panjab University Chandigarh for XRD analysis. We also wish to thank the anonymous reviewers for their useful comments and suggestions that helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Contributions

MRW and GGHAS conceived and designed the work and performed data analysis. MRW and NM performed the experiments and wrote the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Ghulam Shadab.

Ethics declarations

Ethics approval

Institutional Animal Ethics Committee (IAEC), Aligarh Muslim University, Aligarh, (Registration number 714/GO/Re/S/02/CPCSEA) has approved this work.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M.R., Maheshwari, N. & Shadab, G. Eugenol attenuates TiO2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. Environ Sci Pollut Res 28, 22664–22678 (2021). https://doi.org/10.1007/s11356-020-12139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12139-3

Keywords

Navigation