Skip to main content
Log in

Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, two endophytic actinomycetes isolates Oc-5 and Acv-11, were isolated from healthy leaves of medicinal plant Oxalis corniculata L. These isolates were identified as Streptomyces zaomyceticus Oc-5 and Streptomyces pseudogriseolus Acv-11 using 16S rRNA gene sequence. Biomass extract of these strains were used as a greener attempt for synthesis of copper oxide nanoparticles (CuO-NPs). The synthesized NPs were characterized by UV–Vis spectroscopy, Fourier transform infra-red (FT-IR) spectroscopy, X-ray diffraction (XRD)‚ transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). Green synthesized NPs showed surface plasmon resonance (SPR) absorption band at 400 nm, crystalline nature, spherical-shaped with an average size of 78 nm and 80.0 nm for CuO-NPs synthesized using strain Oc-5 and Acv-11, respectively. The bioactivities of CuO-NPs were evaluated. Results revealed that CuO-NPs exhibited promising antimicrobial activity against prokaryotic and eukaryotic microbial cells (Gram positive bacteria, Gram negative bacteria, unicellular and multicellular fungi). In addition, it showed antimicrobial potential against phyto-pathogenic fungal strains Fusarium oxysporum, Pythium ultimum, Aspergillus niger and Alternaria alternata. We further explored the in vitro antioxidant activity and cytotoxicity for biosynthesized CuO-NPs. The results revealed that‚ scavenging and total antioxidant activity for NPs synthesized using Streptomyces pseudogriseolus Acv-11 was better than those synthesized by Streptomyces zaomyceticus Oc-5. Also, the morphological changes and cell viability for Vero and Caco-2 cell line due to NPs treatments were assessed using MTT assay method. Furthermore, Larvicidal efficacy against Musca domestica and Culex pipiens was evaluated. The results obtained in this study clearly showed that biosynthesized CuO-NPs exhibited effective bioactivity and, therefore, provide a base for the development of versatile biotechnological applications soon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kalita MPC, Deka K, Das J, Hazarika N, Dey P, Das R et al (2012) X-ray diffraction line profile analysis of chemically synthesized lead sulphide nanocrystals. Mater Lett 87:84–86

    Article  CAS  Google Scholar 

  2. Karimi J, Mohsenzadeh S (2013) Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synth React Inorg Metal Org Nano Metal Chem 45:895–898

    Article  CAS  Google Scholar 

  3. Pattanayak M, Nayak PL (2013) Green Synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J Nanosci Technol 2(1):06–09

    Google Scholar 

  4. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res. 42:301–312

    Article  Google Scholar 

  5. Rad M, Taran M, Alavi M (2018) Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomed Eng 10:25–33

    Article  CAS  Google Scholar 

  6. Nagar N, Derva V (2018) Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater Chem Phys 213:44–51

    Article  CAS  Google Scholar 

  7. Almasi H, Jafarzadeh P, Mehryar L (2018) Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nano fibers: characterization, antimicrobial and release properties. Carbohydr Polym 186:273–281

    Article  CAS  PubMed  Google Scholar 

  8. Rajesh KM, Ajitha B, Kumar YA, Suneetha Y, Reddy PS (2018) Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: physical, optical and antimicrobial properties. Opt Int J Light Electron Opt 154:593–600

    Article  CAS  Google Scholar 

  9. Rehana D, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A (2017) Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother 89:1067–1077

    Article  CAS  PubMed  Google Scholar 

  10. Gnanavel V, Palanichamy V, Roopan SM (2017) Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J Photochem Photobiol B Biol 171:133–138

    Article  CAS  Google Scholar 

  11. Hassan SELD, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci 11:262–270

    Article  CAS  Google Scholar 

  12. Angajala G, Pavan P, Subashini R (2014) One-step biofabrication of copper nanoparticles from Aegle marmelos correa aqueous leaf extract and evaluation of its anti-inflammatory and mosquito larvicidal efficacy. RSC Adv 4(93):51459–51470

    Article  CAS  Google Scholar 

  13. Zhang Q, Li Y, Xu D, Gu Z (2001) Preparation of silver nanowire arrays in anodic aluminum oxide templates. J Mater Sci Lett 20(10):925–927

    Article  CAS  Google Scholar 

  14. Wang H, Zu JZ, Zhu JJ, Chen HY (2002) Preparation of copper oxide nanoparticles by microwave irradiation. J Cryst Growth 244(1):88–94

    Article  CAS  Google Scholar 

  15. Xu CK, Liu YK, Xu GD, Wang GH (2002) Preparation and characterization of copper oxide nanorods by thermal decomposition of CuC2O4 precursor. Mater Res Bull 37(14):2365–2372

    Article  CAS  Google Scholar 

  16. Yin AJ, Li J, Jian W, Bennett J, Xu JH (2001) Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl Phys Lett 79(7):1039–1041

    Article  CAS  Google Scholar 

  17. Carnes CL, Stipp J, Klabunde KJ (2002) Synthesis, characterization and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir 18(4):1352–1359

    Article  CAS  Google Scholar 

  18. Ghidan AY, Al-Antary TM, Awaad AM (2016) Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach Aphid. Environ Nano Monitor Manag 6:95–98

    Google Scholar 

  19. Gu H, Chen X, Chen F, Zhou X, Parsaee Z (2018) Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason Sonochem 41:109–119

    Article  CAS  PubMed  Google Scholar 

  20. Acharyulu NPS, Dubey RS, Swaminadham V, Kalyani RL, Pratap K, Pammi SVN (2014) Green synthesis of copper oxide nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. Int J Eng Res Tech 3(4):639–641

    Google Scholar 

  21. Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2019) Interaction between plants and bacterial endophytes under salinity stress. Endophytes and secondary metabolites. Switzerland, Springer Nature

    Google Scholar 

  22. Mohmed AA, Fouda A, Elgamal MS, Hassan SED, Shaheen TI, Salem SS (2017) Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium keratoplasticum A1-3. Egypt J Chem 60:63–71

    Google Scholar 

  23. Ibrahim M, Hussain I, Imran M, Hussain N, Hussain A, Mahboob T, Corniculatin A (2013) a new flavonoidal glucoside from Oxalis corniculata. Revista Brasiletia de Pharmacognosy 23(4):630

    Article  CAS  Google Scholar 

  24. Mushir A, Jahan N, Ashraf N, Imran MK (2015) Pharmacological and therapeutic potential of Oxalis corniculata Linn. Discov Phytomed 2(3):18–22

    Article  Google Scholar 

  25. Peng A, Liu J, Gao Y, Chen Z (2013) Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PloS One 8(12):e83054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mufti RM, Amna RM, Haq F, Farooq MHM, Masood S et al (2015) Genetic diversity and metal resistance assessment of endophytes isolated from Oxalis corniculata. Soil Environ 34(1):89–99

    CAS  Google Scholar 

  27. Bilal L, Asaf S, Hamayun M et al (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2):117–127

    Article  CAS  Google Scholar 

  28. Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss). Ann Agric Sci 60(1):95–104

    Article  Google Scholar 

  29. Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lane DJ (1991) 16S/23S rRNA sequencing. In: Goodfellow M, Stackebrandt E (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York

    Google Scholar 

  31. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura MA (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  Google Scholar 

  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  35. Valgas C, Souza SMD, Smânia EF, Smânia JA (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380

    Article  Google Scholar 

  36. Mahdizadeh V, Safaie N, Khelghatibana F (2015) Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot 4(3):291–300

    Google Scholar 

  37. Gulcin I, Kufervioglu OI, Oktay M, Buyukokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L). J Ethnopharmacol 90:205–215

    Article  PubMed  Google Scholar 

  38. Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44(6):307–315

    Article  CAS  Google Scholar 

  39. Prieto P, Pineda M, Anguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  40. Philip S, Kundu GC (2003) Osteopontin induces nuclear factor κB-mediatedpromatrix metalloproteinase-2 activation through IκBα/IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates thesepathways. J Biol Chem 278(16):14487–14497

    Article  CAS  PubMed  Google Scholar 

  41. Busvine JR (1962) A Laboratory technique for measuring the susceptibility of houseflies and blow flies to insecticides. Lab Prot 11:464–468

    Google Scholar 

  42. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed MK, Abdulah S, Mohammed N (2018) Evaluation of some insecticides against Culex pipiens, the dominant mosquito species in Abha city. Int J Hortic Agric Food Sci 2(2):4–17

    Google Scholar 

  44. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  45. Masand M, Jose PA, Menghani E, Jebakumar SR (2015) Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 31(12):1863–1875

    Article  CAS  PubMed  Google Scholar 

  46. Hou BC, Wang ET, Li Y et al (2009) Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol 57(1):69–81

    Article  PubMed  Google Scholar 

  47. Jayakumarai G, Gokulpriya C, Sudhapriya R, Sharmila G, Muthukumaran C (2015) Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Appl Nanosci 5:1017–1022

    Article  CAS  Google Scholar 

  48. Krithiga N, Jayachitra A, Rajalakshmi A (2013) Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian J NanoSci 1(1):6–15

    Google Scholar 

  49. Nabila MI, Kannabiran K (2018) Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal Agric Biotechnol 15:56–62

    Article  Google Scholar 

  50. Sathiyavimal S, Vasantharaj S, Bharathi D, Mythili S, Manikandan E, Kumar SS et al (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Biol 188:126–134

    Article  CAS  Google Scholar 

  51. Khan FA, Zahoor M, Jalal A, Rahman AU (2016) Green synthesis of silver nanoparticles by using Ziziphus nummularia leaves aqueous extract and their biological activities. J Nanomater 2016:1–8

    Google Scholar 

  52. Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta Part A Mol Biomol Spectrosc 121:746–750

    Article  CAS  Google Scholar 

  53. Lin F, Shao Z, Li P, Chen Z, Liu X, Li M et al (2017) Low-cost dual cocatalysts BiVO 4 for highly efficient visible photocatalytic oxidation. RSC Adv 7(25):15053–15059

    Article  CAS  Google Scholar 

  54. Ghisen J, Tjeng L, van Elp J, Eskes H, Westerink J, Sawatzky G et al (1988) Electronic-structure of Cu2O and CuO. Phys Rev B 38:11322–11330

    Article  Google Scholar 

  55. Tamuly C, Hazarika M, Das J, Bordoloi M, Borah DJ, Das MR (2014) Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes. Mater Lett 123:202–205

    Article  CAS  Google Scholar 

  56. Li Z, Xin Y, Zhang Z, Wu H, Wang P (2015) Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection. Sci Rep 5:10617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamza MF, Wei Y, Mira H, Adel A-H, Guibal E (2019) Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni (II) and Pb (II) recovery. Chem Eng J 362:310–324

    Article  CAS  Google Scholar 

  58. Lu S, Chen L, Hamza MF, He C, Wang X, Wei Y et al (2019) Amidoxime functionalization of a poly (acrylonitrile)/silica composite for the sorption of Ga (III)—application to the treatment of Bayer liquor. Chem Eng J 368:459–473

    Article  CAS  Google Scholar 

  59. Fouda A, Hassan SD, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microbial Pathog 125:252–261

    Article  CAS  Google Scholar 

  60. Shaheen TI, Fouda A (2018) Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int J Biol Macromol 106:784–792

    Article  CAS  PubMed  Google Scholar 

  61. Subhankari I, Nayak PL (2013) Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World J Nano Sci Technol 2(1):10–13

    Google Scholar 

  62. European Commission SESCoEaNihr (2007) Report—opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterial, pp 1–68

  63. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M et al (2013) Synthesis, Characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479

    Google Scholar 

  64. Yoon K, Byeon JH, Park J, Hwang J (2007) Susceptibility constants of E. coli and Bacillus subtilis to Ag and Cu nanoparticles. Sci Total Environ 373(2–3):572–575

    Article  CAS  PubMed  Google Scholar 

  65. Espirito-Santo B, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Env Microbiol 74(4):977–986

    Article  CAS  Google Scholar 

  66. Rasool U, Hemalatha S (2017) Marine endophytic actinomycetes assisted synthesis of copper nanoparticles (CuNPs): characterization and antibacterial efficacy against human pathogens. Mater Lett 194:176–180

    Article  CAS  Google Scholar 

  67. Doehlemann G, Okmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016

    Article  PubMed  Google Scholar 

  68. Kanhed P, Birla S, Gaikwad S et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  69. Wu C, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. APA PsycNET Alcohol Res Health 27(4):277–284

    Google Scholar 

  70. Sen S, Chakraborty R, Sridhar C, Reddy Y, De B (2010) Free radicals, antioxidant, diseases and phytomedicines: current status and future prospect nitrogen species. Int J Pharm Sci Rev Res 3(1):91–100

    CAS  Google Scholar 

  71. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Miller MJ, Sadowska-Krowicka H, Chotinaruemol S, Kakkis JL, Clark DA (1993) Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther 264(1):11–16

    CAS  PubMed  Google Scholar 

  73. Ferreira ICFR, Baptista P, Vilas-Boas M, Barros L (2007) Free radical scavenging capacity and reducing power of wild edible mushroom from northeast Portugal: individual cap and stipe activity. Food Chem 100(4):1511–1516

    Article  CAS  Google Scholar 

  74. Gomaa EZ (2017) Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: a green approach. J Genet Eng Biotechnol 15(1):49–57

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chung I, Rahuman AA, Marimuthu S, Kirthi AV, Anbarasan K, Padmini P et al (2017) Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med 14(1):18–24

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Popescu P, Heiss EH, Ferk F, Peschel A, Knasmueller S, Dirsch V (2011) Ikarugamycin induces DNA damage, intracellular calcium increase, p38 MAP kinase activation and apoptosis in HL-60 human promyelocytic leukemia cells. Mutat Res Fund Mol Mech Mutagen 709:60–66

    Article  CAS  Google Scholar 

  77. Morsy T, Rahem M, Allam K (2001) Control of Musca domestica third instar larvae by the latex of Calotropis procera (Family: Asclepiadaceae). J Egypt Soc Parasitol 31(1):107–110

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are greatly thankful to Dr. Mohammed F. Hamza for helping in XPS analysis, also greatly thankful to Dr. Mohamed Ali Abdel-Rahman for their great support and contributions through this work.

Funding

This work was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Fouda.

Ethics declarations

Conflict of interest

Authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.ED., Fouda, A., Radwan, A.A. et al. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24, 377–393 (2019). https://doi.org/10.1007/s00775-019-01654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01654-5

Keywords

Navigation